
1

LUNA: A Model-Based Universal Analysis
Framework for Large Language Models

Da Song*, Xuan Xie*, Jiayang Song, Derui Zhu, Yuheng Huang, Felix Juefei-Xu, Lei Ma

Abstract—Over the past decade, Artificial Intelligence (AI) has had great success recently and is being used in a wide range of
academic and industrial fields. More recently, Large Language Models (LLMs) have made rapid advancements that have propelled AI
to a new level, enabling and empowering even more diverse applications and industrial domains with intelligence, particularly in areas
like software engineering and natural language processing. Nevertheless, a number of emerging trustworthiness concerns and issues
exhibited in LLMs, e.g., robustness and hallucination, have already recently received much attention, without properly solving which the
widespread adoption of LLMs could be greatly hindered in practice. The distinctive characteristics of LLMs, such as the self-attention
mechanism, extremely large neural network scale, and autoregressive generation usage contexts, differ from classic AI software based
on Convolutional Neural Networks and Recurrent Neural Networks and present new challenges for quality analysis. Up to the present,
it still lacks universal and systematic analysis techniques for LLMs despite the urgent industrial demand across diverse domains.
Towards bridging such a gap, in this paper, we initiate an early exploratory study and propose a universal analysis framework for LLMs,
named LUNA, which is designed to be general and extensible and enables versatile analysis of LLMs from multiple quality perspectives
in a human-interpretable manner. In particular, we first leverage the data from desired trustworthiness perspectives to construct an
abstract model as an auxiliary analysis asset and proxy, which is empowered by various abstract model construction methods built-in
LUNA. To assess the quality of the abstract model, we collect and define a number of evaluation metrics, aiming at both the abstract
model level and the semantics level. Then, the semantics, which is the degree of satisfaction of the LLM w.r.t. the trustworthiness
perspective, is bound to and enriches the abstract model with semantics, which enables more detailed analysis applications for diverse
purposes, e.g., abnormal behavior detection.
To better understand the potential usefulness of our analysis framework LUNA, we conduct a large-scale evaluation, the results of
which demonstrate that 1) the abstract model is with the potential to distinguish normal and abnormal behavior in LLM, 2) LUNA is
effective for the real-world analysis of LLMs in practice, and the hyperparameter settings influence the performance, 3) different
evaluation metrics are in different correlations with the analysis performance. In order to encourage further studies in the quality
assurance of LLMs, we made all of the code and more detailed experimental results data available on the supplementary website of
this paper https://sites.google.com/view/llm-luna.

Index Terms—Large Language Models, Deep Neural Networks, Model-based Analysis, Quality Assurance

F

1 INTRODUCTION

Over the last few years, a series of tremendous performance
leaps in many real-world applications across domains have
been empowered by the rapid advancement of LLMs, espe-
cially in the domain of Software Engineering (SE) and Nat-
ural Language Processing (NLP), e.g., code generation [1],
program repair [2], sentiment analysis [3], and question
answering [4]. Representative LLM-enabled applications
such as ChatGPT [5], GPT4 [6], and LLaMA [7] are often
recognized as the early foundation towards Artificial Gen-
eral Intelligence (AGI) [8]. More recently, LLMs present the
promising potential to become a new enabler and booster to
further revolutionize the intelligentization and automation
for various key stages of software production life-cycle.

• *These authors contributed equally to this work.
• Corresponding author
• Da Song, Xuan Xie, Jiayang Song and Yuheng Huang are with the
Department of Electrical and Computer Engineering at the University of
Alberta, Canada. E-mail: {dsong4, xxie9, jiayan13, yuheng18}@ualberta.ca
• Derui Zhu is with the Department of Computer Science at the Technical
University of Munich, Germany. E-mail: derui.zhu@tum.de
• Felix Juefei-Xu is with GenAI at Meta, USA. E-mail: felixu@meta.com
• Lei Ma is with The University of Tokyo, Japan, and University of Alberta,
Canada. E-mail: ma.lei@acm.org

Despite the rapid development, the current quality [9],
reliability [10], robustness [11], and explainability [12] of
LLMs pose many concerns of social society and technical
challenges, the research on which, on the other hand, is
still at a very early stage. For example, recent research indi-
cates that existing LLMs can occasionally generate content
that is toxic, biased, insecure, or erroneous [9], [13], [14].
For example, a typically new type of quality issue is the
phenomenon of hallucination [15], where LLMs confidently
produce nonfactual or erroneous outputs, which poses sig-
nificant challenges for their implementation, particularly
in environments where safety and security are paramount.
Moreover, the rapid industrial adoption of LLMs in various
applications, e.g., robotic control [16] and medical image
diagnosis [17], necessitates urgent analysis and risk assess-
ment methodologies for LLMs.

In recent years, there has come an increasing trend
in research to tackle the quality assurance challenges of
deep learning software, especially Deep Neural Networks
(DNNs) [18]–[39]. Some studies have focused on DNN test-
ing with the goal of pinpointing inputs that a DNN strug-
gles to manage [18]–[24], [30]–[35], [40]–[43]. Concurrently,
advancements in DNN debugging and repair [25]–[29], [36]–
[39], [44]–[49] aim to understand the reasons behind a

https://sites.google.com/view/llm-luna

Subject LLM

Practical Applications

• Sentiment Analysis
• Question & Answer

…

Abstract Model Construction

Dimension
Reduction: PCA

Trustworthiness Perspectives

• OOD Detection
• Adversarial Robustness
• Truthfulness…

Model Quality Measurement Metrics

Internal Info
Extraction

State Space Partition

Kmeans GMM Grid

Model Construction

DTMCHMM

Semantics Binding Abstract Model

Abstract Model-Wise Metrics

Semantics-Wise Metrics

• Succinctness
• Coverage
• Sensitivity

• State Classification
• Perplexity
• …

• Preciseness
• Value Trend
• Surprise Level

• Entropy
• Derivative Trend
• …

Model Quality Assessment

New Input

Subject LLM

Token 1 Token 2 Token N… Abstraction

LLM Outputs Abstract State !s! !s"…

Semantics 0.52

!s#

0.02 0.63

Model-based LLM
Trustworthiness Analysis

Semantics Score

Abnormality
Detection

1

2

3

5 6

Framework Design

Framework Utilization

1

2

3

4

Fig. 1: The workflow summary of LUNA.

DNN’s incorrect predictions and subsequently repair the
model. These studies have made notable contributions to
the advancement of quality assurance in DL-based software.
However, a majority of these works are centered around
Convolutional Neural Networks (CNNs) [50] and Recurrent
Neural Networks (RNNs) [51]. Pei et al. propose DeepX-
plore, a whitebox DNN testing framework combined with
neuron coverage and differential testing to efficiently cap-
ture defects in DNN systems [18]. Zohdinasab et al. leverage
illumination search to identify and quantify the dimensions
of feature space in testing deep learning systems [52]. Hu et
al. propose a framework for mapping between dangerous
situations and the image transformations in the machine
vision components [53]. Among these analysis techniques,
model-based analysis [29], [54]–[58] has been demonstrated
as an effective approach to both provide analysis results,
e.g., testing and monitoring, and human-explainable results.
Pan and Rajan [59] propose to decompose a CNN model
into modules for each output class, enabling reusability and
lowering the environmental cost. Dong et al. [60] develop
an approach to extract probabilistic automata for RNN in-
terpretation, which integrates hidden states abstraction and
automata learning. Qi et al. develop ArchRepair, which re-
pairs DNNs by jointly optimizing architecture and weights
at the block level [61].

Different from CNNs and RNNs, LLMs behave with dis-
tinct features such as the adaptation of the self-attention [62]
mechanism as its core, the complex and large-scale model
size (e.g., 6.7 billion to 65.2 billion parameters in LLaMA se-
ries released by Meta [7]), and the generative output scheme
which highly depend on a broad spectrum of user’s inputs.
Such features make the analysis of LLMs’ behavior more
challenging compared to classification contexts, which are
the main focus of existing research. Therefore, even up to the
present, only very limited research has been conducted to
probe general-purpose LLM-oriented analysis techniques to
understand the quality and behavior characteristics of LLMs

from various aspects. The prospective quality assurance
methods should help better comprehend LLMs’ internal
behaviors, identify unwanted outputs, and aid in improving
the trustworthiness of LLM in practical usage.

As described above, the philosophy of model-based
analysis has been widely proven to be useful towards pro-
viding quality assurance for traditional DNNs; however,
its effectiveness for LLMs is still unknown and deserves
further investigation. Therefore, to bridge this gap, we pro-
pose and design LUNA, a model-based universal analysis
framework for large language models. The first step of
LUNA is to extract an assistant model for analysis. Due to
the high dimensional space and sparsely distributed states,
we extract and build the abstract model such as Discrete-
Time Markov Chain (DTMC) and Hidden Markov Model
(HMM), to enable and ease the analysis procedure and cap-
ture LLM’s probabilistic nature. With the obtained abstract
model, we further perform semantics binding, which is the
degree of satisfaction of the LLM with respect to the desired
quality perspective, to the abstract model to enable in-depth
quality analysis. Moreover, to evaluate the quality of the
model, we collect abstract model-wise metrics and propose
semantics-wise metrics to measure from the perspectives of
models and semantics, respectively. Finally, we apply the
constructed abstract model on abnormal behavior detection to
detect potentially erroneous outputs from the LLMs, e.g.,
hallucination.

In order to demonstrate the potential usefulness of
LUNA, we conduct a large-scale evaluation on multiple
applications of LLMs. The experimental results and in-
depth analysis across three trustworthiness perspectives
(e.g., out-of-distribution detection, adversarial robustness,
and truthfulness) confirm that: 1) the constructed abstract
model can capture and distinguish normal and abnormal
behaviors of the LLM; 2) the quality of the abstract model
is highly impacted by the techniques and corresponding
hyperparameters used in model construction (e.g., dimen-

2

sion reduction and state partition); 3) LUNA is effective
in abnormal behavior detection, e.g., the ROC AUC of ad-
versarial attack detection can achieve 83%; 4) model-based
quality measurement metrics (e.g., abstract model-wise and
semantics-wise) assess the quality of the model from distinct
aspects and are correlated with the performance of the
framework differently.

The main contributions of this paper are summarized as
follows:
• A universal model-based analysis framework, which

is designed for general-purpose quality analysis for
LLMs, provides a human-interpretable way to character-
ize LLM’s behavior.

• A set of model quality measurement metrics for LLMs,
which are collected from existing research (abstract
model-wise metrics) and newly proposed (semantics-wise
metrics). The correlations with the analysis performance
show their potential in guiding the abstract model con-
struction.

• An extensive experiment is conducted to demonstrate
the effectiveness of LUNA, which is on 3 trustworthiness
perspectives, 12 quality measurement metrics, 180 hyper-
parameter settings, and a total of more than 1, 400 CPU
hours. The results demonstrate that LUNA is effective in
LLM’s abnormal behavior detection.

• An exploratory study to investigate the effectiveness of
model-based analysis in the context of LLMs. This paper
also targets inspiring more relevant research in this direc-
tion towards approaching the goal of achieving trustwor-
thy LLMs in practice.

The Contributions to the Software Engineering Field.
With an increasing trend of adopting LLMs in the software
production life cycle, LLMs would potentially draw signif-
icant impact to the domain of software engineering as they
present explicit capabilities to accelerate the development
process and implementation outcomes [63]–[66]. Hence,
the quality analysis of LLMs calls even more attention as
it ridges the last gap to further deploy LLMs on safety,
reliability, and security-concerned applications. Following
the path in this direction, our work also endeavors to
empower the interaction of LLMs within SE by establishing
the early foundation of model-based analysis to enable more
systematic investigations towards trustworthy LLMs across
various SE applications. he rest of the paper is structured
as follows. Section 2 introduces the corresponding back-
ground. Section 3 describes the different abstraction meth-
ods and model construction techniques. Section 4 details the
experiment setup and reports the results. Section 5 discusses
the potential impact and future directions. Section 6 inspects
the threats that may affect the validity of our work. Section 7
summarizes the related words, and Section 8 concludes
the paper. All code and study findings have been made
available at https://sites.google.com/view/llm-luna.

2 BACKGROUND

In this section, we first provide the background knowledge
on the analyzed deep learning model, i.e., the Large Language
Model (LLM).Trustworthiness perspectives of LLMs are then
introduced, which are of serious concern to the quality and
reliability of LLMs. In addition, we describe the key idea of

model-based analysis at a high level, the main technique used
in our analysis framework.

2.1 Large Language Models
Witnessed by various industrial and academic communities,
LLMs, a new revolution in AI technology, have demon-
strated human-competitive capabilities in various natural
language tasks across domains (e.g., text generation, lan-
guage translation, code development) [1], [67]–[71]. Intu-
itively, LLMs are a type of neural network model that is usu-
ally established based on the Transformer architecture [62]
with millions, even billions of parameters. Such models are
pre-trained on large corpora of text data, which enclose
numerous commonsense knowledge [72]. LLMs output a
sequence of words following a probability distribution;
namely, each output token is generated coherently based
on the input prompt and prior outputs. Up to the present, a
growing number of research indicates that LLMs are capable
of delivering high-level problem-solving skills for a variety
of downstream tasks, such as question-and-answer [73],
sentiment analysis [74], text summarization [75], code gen-
eration [76] and code summarization [77].

Besides the large network scale, the superior perfor-
mance of LLMs can also give credit to the transformer ar-
chitecture and its central mechanism: self-attention [62]. Self-
attention assesses each element within the input sequence
by comparing them with one another and then alters the
respective positions in the output sequence. The unique
transformer architecture enables the LLMs to surpass the
traditional RNNs regarding many challenges, such as long-
range dependencies [78] and gradient vanishing [79]. Self-
attention is encompassed in the decoder block, which is a basic
unit of the decoder-only LLM, which will be introduced
later in this Section. Many studies confirm the information
enclosed in the output of the decoder block can be an asset
to characterize the behaviors of an LLM [80]–[83]. Thus, in
this work, we leverage the decoder block outputs and traces
extracted from the LLM to construct an abstract model-
based LLM analysis framework. We further detail the model
construction in our study in Section 3.2.

LLMs can be categorized into three main different types
according to their transformer architectures and pre-trained
tasks: encoder-only, encoder-decoder and decoder-only. Encoder-
only LLMs (e.g., BERT [84], DeBERTa [85], RoBERTA [86])
are pre-trained by masking a certain number of input to-
kens and aim to predict the masked elements retroactively.
Alternatively, encoder-decoder LLMs, such as BART [87], Flan-
UL2 [88] and T5 [89], utilize an encoder to first covert the
input sequence into a hidden vector, then a subsequent
decoder further converts the hidden vector into the output
sequence. This encode-then-decode architecture has advan-
tages in processing sequence-to-sequence tasks involving
intricate mapping between the input and output. Decoder-
only LLMs are auto-regressive models that predict each
token based on the input sequence and the prior generated
tokens. Representative decoder-only LLMs like GPT4 [6],
GPT3 [90] and LLaMA [7] are recognized as prevailing
attributable to their training efficiency and scalability for
large-scale models and datasets. In this study, we mainly
focus on decoder-only LLM, LLaMA, considering its avail-
ability, commonality and computation cost; nevertheless,

3

https://sites.google.com/view/llm-luna

our framework itself can still be generalized and adapted to
LLMs other than decoder-only ones. We introduce the subject
LLM and corresponding settings in Section 4.2.1.

2.2 LLM Trustworthiness Perspective
Interpreting and understanding the behaviors of machine
learning models, especially LLMs, is one of the essential
tasks in both AI and SE communities [9], [19], [54], [91].
Recently, some researchers and industrial practitioners have
tried to seek to understand the capability boundary and
characteristics of the models in order to deploy them in prac-
tical applications more confidently and adequately. Quality
analysis is applied to initiate to approach a comprehen-
sive and consistent view of model trustworthiness, such as
safety [92], robustness [93] and security [94]. In this work,
we also leverage our proposed analysis framework LUNA to
conduct quality analysis of LLMs from three aspects: Out-of-
Distribution Detection, Adversarial Attacks and Hallucination.
Such three perspectives are notoriously known as vital
factors that affect the trustworthiness of LLMs.

2.2.1 Out-of-Distribution (OOD) Detection
A fundamental premise of machine learning is the simi-
larity in distribution between training and future unseen
test data. In other words, DNN models might falter when
encountering some data (in the future) deviating from the
training distribution [95]. Empirical research has shown that
DNNs may even be highly confident to offer an erroneous
prediction in this scenario [96], [97]. To alleviate this issue,
OOD detection has been introduced to improve the quality
of data-driven software by detecting the irrelevant OOD
data without letting a DNN make wrong decisions on it
that would be incorrectly handled with high possibility [20],
[96]–[98]. The objective is to craft a probability distribution
estimation function PX (X is the training distribution) that
assigns a score to a given input x and sets a corresponding
threshold � for the OOD detection [99]:

g(x) =

(
in if PX (x) � �

out if PX (x) < �
(1)

While early research predominantly focused on image
classification tasks, some efforts have also been made in
NLP domains [100]. This encompasses the detection of OOD
instances in text classification [101], translation [102], and
question-answering [103]. Yet, the OOD challenges asso-
ciated with LLMs present greater difficulty [104]. Firstly,
LLMs’ training data are often either inaccessible or too large,
making exploration challenging. Secondly, LLMs’ emergent
ability across varied tasks makes traditional OOD measure-
ments on standalone tasks inappropriate to apply.

To address this issue, researchers collect OOD data made
public after a certain timestamp (e.g. 2022) because LLM-
based systems such as ChatGPT typically disclose the con-
clusion date of their training data (e.g. 2021). However, with
the continuous evolution of LLMs, related benchmarks may
soon be out-of-date. In this study, we instead focus on the
OOD style [105], where the original data are transformed
to another style (e.g. Shakespeare) at both word-level and
sentence-level. We follow the settings of the DecodingTrust

benchmark [9] and perform related studies on the SST-2
development set.

2.2.2 Adversarial Attacks
The sensitivity of DNNs’ predictions against subtle pertur-
bation in the inputs as an intriguing property has been
studied for over a decade now [106], [107]. Such sensitivity
is due to the highly nonlinear nature of DNNs and could
be utilized by adversaries for malicious attacks [108]. Re-
lated attack models are first defined in image domains as
subtle and continuous perturbations on image pixels that
aim to fool classifiers [109]. Such attacks can be formu-
lated as optimization problems, and the goal is to find
perturbations on inputs that change the final predictions.
These attacks have been adapted to the text domain, where
perturbations are defined as discrete ones at the word,
sentence, or entire input levels. In this context, adversarial
GLUE [110] stands out as a comprehensive benchmark for
text domain adversarial robustness. It incorporates various
prior attack methodologies across multiple tasks and is
continuously updated. Wang et al. [104] recently assessed
ChatGPT’s adversarial robustness using this benchmark.
Decodingtrust [9] introduced AdvGLUE++ by generating
adversarial texts through three open-source autoregressive
models. In our study, we employ AdvGLUE++ to gauge the
adversarial robustness of LLMs.

There are numerous strategies to enhance the robustness
of DL-driven systems against adversarial attacks, such as
adversarial training, perturbation control, and robustness
certification [111]. Given the computational intensity and
vast data associated with LLMs, training and certification
are beyond the scope of this paper. Consequently, we turn
to adversarial detection, a lighter approach that falls in
perturbation control, which is also well suited for model-
based analysis. Upon detecting an adversarial attack, the
model can either reject the input or take other actions.
This setting is similar to OOD detection but focuses on
adversarial scenarios.

2.2.3 Hallucination
With the advancement of language models, some research
works have posed these models can occasionally produce
unfaithful and nonfactual content considering the given
inputs [112]–[114] and such undesirable generation behavior
is so-called hallucination [15]. Hallucination hinders the
trustworthiness and reliability of LLMs and causes seri-
ous concerns for LLM-embedded real-world applications.
Different from other factors that harm the trustworthiness
of LLMs, the detection of hallucinations is challenging
and often requires active human efforts to evaluate the
generated outcomes based on input contexts and external
knowledge [8], [72]. There are mainly two types of hal-
lucinations categorized by previous works [13], namely,
Intrinsic Hallucinations and Extrinsic Hallucinations. The
former is defined as the existence of contradictions between
the source content and the generated outputs, and the latter
indicates the outputs cannot be verified from the source.

To mitigate the risks from hallucinations, a series of
strategies have been proposed by researchers and are di-
vided into two categories: Data-Related Methods and Mod-
elling and Inference Methods [15], [115]. In particular, data-

4

related methods tackle the problems by data-cleaning and
information augmentation [116], and modelling and infer-
ence methods modify the architecture of the model or ap-
ply optimizations at the training phase [117]. Nevertheless,
existing solutions are not well-applicable in the context of
LLMs, seeing the large-scale training corpus, the massive
training cost and the complex model structure with billions
of parameters. In this work, we conduct experiments on the
TruthfulQA benchmark to evaluate the effectiveness of the
proposed framework LUNA in terms of hallucination detec-
tion. We detail the subject tasks of this work in Section 4.2.2.

2.3 Model-based Analysis
An autoregressive language model denoted as p, is es-
sentially a function f✓ parameterized by ✓. This function
assigns a probability distribution over the alphabet V based
on an input string y0, · · · , yt�1. The generation procedure
entails repeatedly invoking p, which can be interpreted as a
stochastic process:

p(y = y1, · · · , yT) =
TY

t=1

p(yt|y<t) (2)

where yT is the end-of-string symbol (EOS), y<t is
defined as (y0, · · · yt�1), and y0 is the user provided prompt.

The generation chain involves successive calls to the
DNN which is often well-known for its black-box nature.
This intricate procedure complicates direct analysis. To
make this stateful DNN-driven process more transparent
and trustworthy, researchers previously tried to extract an
interpretable model by examining the DNN’s behavior on
training data [54], [118]–[122]. However, the effectiveness
of such modelling techniques is still unclear in the context
of LLMs since 1) whether the hidden states of LLMs can
provide insights to assist the interpretation of their behav-
ior [80], [81], [123] and 2) to what extent the traditional
probabilistic models, such as DTMC [124], can help explain
the probabilistic processes of LLMs.

In particular, previous works [54], [59], [60] begin by col-
lecting and analyzing hidden states extracted from DNNs.
However, as the high dimensional state space derived di-
rectly from the DNNs is too vast to process, abstraction
techniques such as dimension reduction and state parti-
tion [119], [120] are usually necessary to map concrete states
to abstract ones. Subsequently, each inference can be repre-
sented as a sequence of state transitions, enabling the con-
struction of a probabilistic model that emulates the behavior
of the original DNN. These models can facilitate adversarial
detection [125], privacy analysis [126], maintenance [55],
[127], [128], interpretability [60], [129], and debugging [29].

In this study, we adopt a similar approach with details
explained in Section 3.2. It is worth noting that much of the
prior research focuses on classification tasks based on RNN,
while we mainly study the autoregressive generation of
LLMs. RNN classification can be viewed as a special case of
autoregressive generation, where only one label is generated
for an input string. Namely, the autoregressive generation of
LLMs brings more challenges for analysis from the quality
assurance perspective since 1) the quality of the generated
text is not only determined by the individual token but

also by the overall structure and semantic coherence of the
generated text, 2) the output at each time step is depen-
dent on all previous outputs, which adds another layer of
complexity, and, 3) LLMs’ large and diverse output spaces
across a wide range of topics make a comprehensive quality
analysis even more difficult.

3 METHODOLOGY

In this section, we first discuss the workflow of our proposed
framework LUNA at a high level (Section 3.1). Then, we
introduce the abstract model construction procedure in Section
3.2, and the semantics binding in Section 3.3, the two impor-
tant stages in our framework. The evaluation metrics for as-
sessing the quality of the models is described in Section 3.4.
At last, we introduce the general-purposed applications of
our model-based analysis in Section 3.5.

3.1 Overview
As illustrated in Figure 1, LUNA is a model-based anal-
ysis framework crafted to investigate the trustworthiness
of LLMs. At a high level, LUNA includes four key stages:
abstract model construction, semantics binding, model quality
metrics, and practical application.
Abstract model construction. The first step is to build the
abstract model, which plays a predominant role in our anal-
ysis framework. To enable the universal analysis for LLM,
LUNA is designed to support an assortment of abstraction
factors, i.e., dimension reduction (PCA), abstraction state
partition (grid-based and cluster-based partition), and ab-
stract model types (DTMC and HMM). (Section 3.2)
Semantics binding. With the abstract state space, an im-
portant step is to know what information contained in the
state can help the analysis process. Thus, after the abstract
model is built, we bind semantics, which is the level of
satisfaction of the LLM with respect to the specific trustwor-
thiness perspective. The semantics of the model represent
the behavior logic of the LLM and empower an in-depth
analysis. (Section 3.3)
Model quality assessment. A crucial step before practical
application is the evaluation of the quality of the model.
To evaluate the quality of the constructed model, we lever-
age two sets of metrics: abstract model-wise metrics and
semantics-wise metrics. We collect abstract model-wise met-
rics to measure the quality of the abstract model from exist-
ing works. To evaluate the quality of the semantics binding,
we also propose semantics-wise metrics. (Section 3.4)
Practical application. LLMs can occasionally make up an-
swers or generate erroneous outputs in their answers. To en-
hance the trustworthiness of LLMs, it is important to detect
such abnormal behaviors. After constructing the abstract
model, we utilize it for a common analysis for LLMs, specif-
ically, the detection of abnormal behaviors. (Section 3.5)

3.2 Abstract Model Construction
Taking both trustworthiness perspective-specific data and
the subject LLM as inputs, we first profile the given model
to extract the concrete states and traces, i.e., outputs from
the decoder blocks. Then, we leverage the extracted data to
construct our abstract model. In this work, we mainly study

5

two state-based models, DTMC and HMM, depicted as
Figure 2. The construction of these two models is described
as follows.

Abstract Model-Wise Semantics-Wise

Metrics

Basic-level Basic-level Trace-level Surprise-level

• Succinctness

• Coverage

• Sensitivity

State-level

• Sink State

Model-level

• Stationary Entropy

• Perplexity

• Preciseness

• Entropy

• Value

• 1+, Derivative

• Bayes Reasoning

• Prior, Posterior

!#

!$!%

!&

0.4
0.6

1.0
0.2

0.3

0.5

a DTMC

!% !$

"% "$

1.0
0.5

0.5
0.40.3

0.7

b HMM

0.6

Fig. 2: DTMC and HMM illustration

3.2.1 DTMC Construction
Definition 1 (Discrete Time Markov Chain). A DTMC is a
tuple (S̄, s̄0, �̄, P̄), where S̄ is a finite set of states, s̄0 2 S̄ is
the initial state, �̄ is the set of transition, and P̄ : S̄ ⇥ S̄ !
[0, 1] is the transition probability function.

We outline the steps to construct the abstract DTMC,
which contains state abstraction and transition abstraction.
• State Abstraction

The state abstraction aims to build the abstract state
space S̄, which includes two steps: dimension reduction and
state space partition.

The dimension of concrete states is equal to the number
of neurons of decoder block outputs, which is typically
too high to analyze directly. For instance, with 32 decoder
blocks and 4, 096 dimensions, the dimension of the hidden
states for a single token in LLaMA-7b is 131, 072. Thus, we
first apply dimension reduction to reduce the dimension of
concrete states to ease the analysis complexity. In particular,
we leverage Principle Component Analysis (PCA) [130] to
transform the original data to k dimensional vector, which
retains the most important patterns and variations in the
original data.

Then, we perform state space partition to construct the
abstract state space. We use two ways that are commonly
used in the recent works [54], [121], [126] to conduct the
partition: grid-based partition and cluster-based partition. For
regular grid-based partition, we first apply multi-step ab-
straction to include more information contained in the near
temporal steps. The abstraction is essentially created by
sliding a N -step window on the trace. In other words, for
N = 2, {si, si+1}, and {si+1, si+2} are different multi-step
abstraction. Then, we apply grid partition; namely, each
dimension of the k-dimensional space is first uniformly
divided into m grids, and we use c

i
j to denote the j-th

grid of the i-th dimension. Then, the compressed concrete
states that fall into the same grid are assigned to the same
abstract state, i.e., s̄ = {si|s1i 2 c

1 ^ · · · ^ s
k
i 2 c

k}. For
the cluster-based partition, we utilize existing clustering
algorithms, e.g., Gaussian Mixture Model (GMM) [131] and
KMeans [132], to assign the compressed concrete states into
n different groups, where each of such group is considered
an abstract state.
• Transition Abstraction

The objective of transition abstraction is to build the
abstract transition space �̄ and the corresponding transi-
tion probability. Here, we define that there is an abstract

transition t̄ between abstract states s̄ and s̄
0 if and only

if there are concrete transitions between s and s
0, where

s 2 s̄ and s
0 2 s̄

0. Moreover, the transition probability of
an abstract transition is computed as the number of the
concrete transitions from abstract state s̄ to another abstract
state s̄

0 over the number of total outgoing transitions.

3.2.2 HMM construction
HMM [133]–[135], is designed to catch the sequential depen-
dencies within the data and is able to provide a probability
distribution over possible sequences. Hence, we also choose
HMM to model the hidden state traces.

Definition 2 (Hidden Markov Model). An HMM is a tuple
(S̄, �̄, P̄ , Ō, Ē, Ī), where S is the hidden state space, �̄ is
the transition space, P̄ : S̄ ⇥ S̄ ! [0, 1] is the transition
probability function that maps the transition to the prob-
ability distribution, Ō = {o1, . . . , on} is the finite set of
observations, Ē : (si, oj) ! [0, 1] is the emission function
that maps the observation oj being generated from state si

to a probability distribution, and Ī : S ! [0, 1] is the initial
state probability function that map the state space to the
probability distribution.

The construction of HMM is as follows. We first define
the state space S with the number of hidden states and the
abstract states, built in DTMC construction (Section 3.2.1),
and the observations Ō, which is all the seen abstract states
in the abstract states space. Then, we use the standard
HMM fitting procedure – Baum-Welch algorithm [136] (as
an Expectation-Maximization algorithm) to compute tran-
sition probability P̄ , Emission function Ē, and initial state
probability function Ī . Baum-Welch algorithm is composed
of expectation, which calculates the conditional expectation
given observed traces, and maximization, which updates the
parameters of P̄ , Ē, and Ī , to maximize the likelihood
of observation. The Baum-Welch algorithm determines the
most probable sequence of hidden states that would lead
to the sequence of observed abstract states. The constructed
HMM is capable of analyzing and predicting the future text
and outputs, based on the probabilistic modelling of the
historical data, i.e., the fitted P̄ , Ē, and Ī .

3.3 Semantics Binding
To enable an effective quality analysis, we bind semantics,
which reflects LLM’s performance regarding specific trust-
worthiness perspectives, to the abstract model.

Definition 3 (Semantics). The concrete semantics ✓ 2 Rn of
a concrete state sequence ⌧

k = hsi, . . . , si+k�1i represents
the level of satisfaction of the LLM w.r.t. the trustworthiness
perspectives.

Intuitively, semantics reflects the condition of the LLM
regarding the desired trustworthiness perspective. Assume
k = 1, as shown in Figure 3, when the LLM falls in states
s̄0, s̄1, s̄2, and s̄3, it is considered to be in the normal status,
while state s̄4 is considered to be an abnormal state for
the model. Moreover, we perform semantics abstraction
to obtain the abstract semantics ✓̄. We take the average
values of all concrete semantics in the abstract state as the
abstract semantics. The essence of our semantics binding

6

lies in its ability to align the internal states of an LLM to
externally observable behaviors, specifically pertaining to
different tasks. Therefore, such semantics interpretation acts
as a bridge, connecting the abstract behavior captured by
the model to the real-world implications of that behavior.
Note that when k = 1, the sequence contains only one state.
To ease the notation, we omit k.

Concrete State

!! !"!

!""

!"#

!"$

!"%

!"
!"!

!#

!$

!% !&

!'

!(

!"#

!""

!"%

!"$

('(, '))

Abstract State

('*, '+)

(',)

('-, '.)

('/)

!#

!$
!%

!&

0.40.6

1.0

0.2

0.3

0.5

a DTMC

!% !$

"% "$

1.0

0.50.5

0.40.3 0.7

b HMM

0.6
3"*

3"!
3"#

3""
3"$

#̅)" ̅#"!

#̅!!
#̅!#

#̅#*

#̅**
Normal

State/Transition
Abnormal

State/Transition

Candidate Semantics

• OOD Score
• Adversarial Robustness
• Truthfulness

199,
 5,
 163,
 63,
 47,
 2,
 47,
 108,
 2,
 132,
 135,
 54,
 159,
 4

Prompt: Which is denser, water vapor or air?

LLM: Water vapor is denser than air.

Abstract
Model State

…s+,, s- s+-, s.

Semantics: 0.12 0.23 0.01 0.15…
0.04
Final

Semantics Score

Abnormality
Detected

$/0+… …$/

Given: %($/0+) = Good

) %($/ = *++,) = ?

Fig. 3: Semantics bound abstract model.
We use hallucination detection [137] as an example to

illustrate the semantics binding. The concrete state could
be bound with the truthfulness, i.e., the probability of the
answer being true, of an answer text. While in OOD sample
detection, the transition probability between two states, i.e.,
si and si+1, can be deemed as the semantics regarding OOD
✓̄(hs̄i, s̄i+1i), because the transition probability intrinsically
indicates whether the sequence exists in the training dataset
to some extent.

3.4 Model Quality Metrics
Once the abstract model is built, one of the important steps
before the concrete application is to assess the quality of the
abstract model. The assessment is typically through some
types of metrics. In this work, we collect and summarize a
set of metrics characterizing the quality of the model. At a
high level, the metrics can be divided into abstract model-
wise metrics and semantics-wise metrics. Below, we briefly
introduce these metrics, and the full definition of the metrics
can be referred to Appendix A.

To evaluate the quality of the constructed model, we
collect the metrics that are widely used in the literature [54],
[121], [126], [138], [139] to assess the model from diverse
aspects, as displayed in Table 1. We call such metrics as
abstract model-wise metrics. Abstract model-wise metrics are
categorized into three types: basic, state-level, and model-
level. Basic metrics contain succinctness (the abstract level
of the state space), coverage (how many new states are
unseen in the state space), and sensitivity (whether abstract
states differ under small perturbation). The state-level met-
rics contain state type classification, e.g., sink state [124],
which helps identify the property of the Markov model, e.g.,
absorbable (the Markov chain cannot escape some undesir-
able states.) [140]. We compute the following metrics for
model-level metrics: stationary distribution entropy [139]
and perplexity [141], which reflect the stability of the model
and the degree of well-fitting to the training distribution,
respectively.

Note that the abstract model-wise metrics do not in-
volve semantics, which contains the level of satisfaction w.r.t.
trustworthiness. However, to our knowledge, not much
work provides general metrics to measure the quality of
the abstract model in terms of semantics. To fill this gap,
we propose semantics-wise metrics, as shown in Table 2.
The semantics-wise metrics are extended into basic, trace-
level, and surprise-level. Basic semantics-wise metrics contain

semantics preciseness (the average preciseness of abstract
semantics) and semantics entropy (the randomness and
unpredictability of the semantics space). Trace-level metrics
compute the level of how the semantics change temporally,
which includes value diversity (instant value and n-gram
value) and derivative diversity (n-gram derivative) [142].
Surprise-level metrics try to evaluate the surprising degree
of the change of the semantics by means of Bayesian reason-
ing [143].

3.5 Applications
Recent works demonstrate that the abstract model has ex-
tensive analysis capability for stateful DNN systems [29],
[54], [126]. Here, to validate the practicality of our con-
structed abstract models, we mainly apply them into abnor-
mal behavior detection, which is a common analysis demand
for LLMs [144], [145]. As introduced in Section 2, abnormal
behavior refers to the unintended expression of LLM, e.g.,
making up answers or generating biased output [146]–
[150]. To detect such behavior, we leverage the abstract
model with the semantics. The procedure of detection is as
follows. Given an output text and the abstract state trace
{s̄1, . . . , s̄n}, we first acquire the corresponding semantics
trace {✓̄(s̄1), . . . , ✓̄(s̄n)}. Then, we compute an semantics
score by taking the mean of the semantics sequence value,
namely, AVG(✓̄(s̄i)). Finally, we compare the computed score
with the ground truth to determine the performance of
classifying the output text as normal/abnormal behavior.

Concrete State

!! !"!

!""

!"#

!"$

!"%

!"
!"!

!#

!$

!% !&

!'

!(

!"#

!""

!"%

!"$

('(, '))

Abstract State

('*, '+)

(',)

('-, '.)

('/)

!#

!$
!%

!&

0.40.6

1.0

0.2

0.3

0.5

a DTMC

!% !$

"% "$

1.0

0.50.5

0.40.3 0.7

b HMM

0.6
!"*

!"!
!"#

!""
!"$

"#)" "#"!

"#!!
"#!#

"##*

"#**
Normal

State/Transition
Risky

State/Transition

Candidate Semantics

• Truthfulness
• OOD Score
• Sentiment

Prediction

199,
 5,
 163,
 63,
 47,
 2,
 47,
 108,
 2,
 132,
 135,
 54,
 159,
 4

Prompt: Which is denser, water vapor or air?

LLM: Water vapor is denser than air.

Abstract
Model State

…s+,, s- s+-, s.

Semantics: 0.12 0.23 0.01 0.15…
0.04
Final

Semantics Score

Abnormality
Detected

$/0+… …$/

Given: %($/0+) = Good

) %($/ = *++,) = ?
Fig. 4: Example of hallucination detection on TruthfulQA.

Here, we provide a running example of hallucination
detection, as shown in Figure 4, to show how we use the
abstract model to detect abnormal behaviors. The prompt
to LLM is ”Which is denser, water vapor or air?” and the LLM
answers ”Water vapor is denser than air.”. The corresponding
abstract state sequence is s̄199 ! s̄5 ! · · · ! s̄159 ! s̄4,
and the semantics sequence is 0.12 ! 0.23 ! · · · !
0.01 ! 0.15. The computed semantics score is 0.04, and
we identify the answer as an abnormal behavior. Moreover,
we can see that state s̄159 is an abnormal state, which
represents the LLM become abnormal at word ”denser”.
Such semantics-based LLM behavior interpretation enables
a human-understandable approach to explain and analyze
the quality of the LLM w.r.t. different trustworthiness per-
spectives. It is worth noting that our framework is designed
with adaptability for various practical applications (e.g.,
OOD detection, adversarial attack detection, etc.). More con-
crete examples of our framework on different applications
are available on https://sites.google.com/view/llm-luna.

4 EXPERIMENTS
In this section, we detail the experiments conducted to
validate our framework, LUNA. Through a series of experi-

7

https://sites.google.com/view/llm-luna

TABLE 1: Abstract Model-wise Metrics.

Metric Description Type

Succinctness (SUC) State reduction rate and transition reduction rate Basic
Coverage (COV) Unseen states/transitions in abstract model Basic
Sensitivity (SEN) Abstract state variation under small perturbation Basic
State classification (SS) Sink state from Markov chain State
Stationary Distribution Entropy (SDE) Randomness and unpredictability within the transitions Model
Perplexity (PERP) The degree of well-fitting to the training distribution Model

TABLE 2: Semantics-wise Metrics.

Metric Description Type

Semantics Preciseness (PRE) Mean and max semantics error Basic
Semantics Entropy (ENT) Randomness and predictability of semantics Basic
Value Trend (IVT, NVT) Instant Value Trend and and n-gram Value Trend Trace
Derivative Trend (NDT) The trend of derivative over the temporal domain Trace
Surprise (SL) The degree of the change of the semantics Surprise

Fig. 5: RQ1: Distribution of transition probabilities of three studied datasets.

ments, we aim to investigate LUNA’s effectiveness in terms
of characterizing the behaviors of LLMs and detecting the
abnormality of the subject LLM. Leveraging the previously
introduced metrics and applications, our experiments aim to
demonstrate the framework’s potential as a universal tool
to support the quality assurance of LLMs across various
trustworthiness.

The implementation design of LUNA is to build an
extensible and plug-and-play framework to enable and sup-
port the research on the quality assurance of LLMs. More
specifically, the extensibility and adaptability of LUNA reflect
on the four aspects: 1) it can be applied to diverse types of
LLMs (encoder-only, decoder-only, encoder-decoder); 2) it
incorporates a series of abstraction and modelling methods
to offer an enriched LLM analysis pipeline and can be
further extended with more advanced analysis techniques;
3) it encloses an assortment of metrics to measure the quality
of the model and the trustworthiness of the LLM from a
diverse spectrum of aspects and can embed new metrics
seamlessly according to users’ demands; 4) it fits diverse
trustworthiness perspectives as well as practical applica-
tions. Based on LUNA, many further extensions and more
advanced techniques could be proposed and incorporated
into our framework for more advanced quality assurance
purposes for LLMs.

4.1 Research Questions

In particular, with LUNA, we conduct evaluations to inves-
tigate the following research questions:

• RQ1: Can the abstract model differentiate the normal and
abnormal behaviors of LLM?

• RQ2: How do different modelling techniques and corre-
sponding configurations impact the quality of the abstract
model?

• RQ2.1: How is the state abstraction correlated with ab-
stract model-wise evaluation metrics?

• RQ2.2: How is the model construction method correlated
with abstract model-wise evaluation metrics?

• RQ3: How does the framework perform across target
trustworthiness perspectives, and how is its performance
correlated with both semantics-wise and abstract model-
wise metrics?

• RQ3.1: How does our framework perform on trustworthi-
ness perspectives regarding semantics-wise metrics?

• RQ3.2: How is the performance of the framework corre-
lated with the abstract model-wise metrics?

We start with an initial inquiry about the abstract
model’s capability of distinguishing normal and abnormal
behaviors (RQ1). We then examine the correlation between
modelling settings, resulting attributes, and model metrics
(RQ2.1 and RQ2.2). Finally, we assess the abstract model’s
effectiveness across various trustworthiness perspectives,
drawing insights into the relationships among performance,
model construction settings, and quality measurement met-
rics (RQ3.1 and RQ3.2).

RQ1 serves as a preliminary study demonstrating the
ability of our abstract model in terms of abnormal behavior
detection, laying the foundation for subsequent research
questions. These anomalies could appear as hallucinations,
OOD samples, or adversarial attacks.

Based on the findings in RQ1, we further leverage
abstract model-wise metrics to quantitatively evaluate the
quality of the abstract model in RQ2. These metrics delve
into the attributes of abstract models from various per-

8

spectives, probing how different configurations during the
model’s construction can influence its overall quality.

In RQ3, our primary focus is on the practical applications
where our model-based analysis framework gets deployed.
Starting with RQ3.1, we assess the framework’s real-world
efficacy by examining the Area Under the Receiver Oper-
ating Characteristic Curve (ROC AUC) [151] across multi-
ple trustworthiness perspectives. Additionally, this inves-
tigation uncovers how the effectiveness of our framework
is correlated to specific semantic-wise metrics. In RQ3.2,
we further inspect the relationships between the analysis
performance and the abstract model-wise metrics. Namely,
we illuminate the connections between the hyperparameter
settings and their associated model-wise metrics. Taken to-
gether, our analyses not only enhance the understanding of
the model’s effectiveness but also offer insight into metrics-
driven guidance for abstract model construction w.r.t. vari-
ous trustworthiness perspectives.

4.2 Experiment Settings
4.2.1 General Setup
Subject LLMs. As many performant LLMs are treated
as vital intellectual properties and kept black-boxed, it is
challenging to find adequate open-source LLMs to conduct
our study. We focus on two sources that potentially release
high-performance open-source LLMs with acceptable de-
ployment costs: 1) distribution of LLMs from artificial in-
telligence companies such as OpenAI, Meta AI and Google
AI, and 2) LLM-related literature, such as the papers and
LLMs released by research institutes [7], [152], [153]. We do
our best to select the most eligible subject LLMs according
to the following criteria.
• Open-source availability: A LLM must be open-sourced

such that we can extract the internal information from
the LLM to conduct the following model construction
process.

• Competitive performance: A LLM must be representa-
tive and have competitive performance regarding diverse
task-handling abilities. In such a manner, we can obtain
generalizable insights and implications from the experi-
ments.

• Acceptable deployment cost: A LLM must be scalable to
get deployed on limited computational resources. Some
state-of-the-art LLMs come with high demand deploy-
ment and operation costs, which is not feasible for many
research groups in the community.

Eventually, we select Alpaca-7b [154] as our subject LLM
for this study. In particular, Alpaca-7b is a publicly available
LLM with performance parallel to GPT3.5 [152]. In addition,
Alpaca-7b manifests promising diverse task-handling abili-
ties with an acceptable computational resource requirement.
Hence, we consider it the best-fit subject LLM to deliver
representative results and insights.
Experimental Environment. All of our experiments were
conducted on a server with a 4.5GHz AMD 5955WX 16-
Core CPU, 256GB RAM and two NVIDIA A6000 GPUs with
48GB VRAM each. The overall computational time is over
1, 400 hours.
Hyperparameters Settings. As mentioned in Section 3.2, our
framework encloses various state abstraction and modelling

methods with numerous hyperparameters. Therefore, there
could be myriad possible hyperparameter combinations in
our design that are not feasible to fully evaluate. Even
though, to better understand the effectiveness of our frame-
work, with our limited computational resources, we tried
our best and conducted evaluations on as many as 180
representative hyperparameter settings to investigate the
characteristics of different settings. The hyperparameters of
our experiments are summarized in Table 3.
Evaluation Metrics. Evaluation metrics are another crucial
segment of our framework, as these metrics are devoted to
presenting a transparent and comprehensive understanding
of the quality of the constructed model as well as the
effectiveness of the framework across different applications.
Although some previous metrics are proposed by litera-
ture [54], [121], [126], [138]–[143] , only some of them are
applicable to the context of LLMs. Thus, we carefully select
6 widely used metrics to assess the quality of the abstract
model and propose another 6 metrics to evaluate the effec-
tiveness of the model in terms of different trustworthiness
perspectives. With these 12 metrics, we aim to conduct a
relatively comprehensive evaluation as much as we can to
obtain an in-depth understanding of our framework under
different hyperparameter configurations, as well as the im-
pact of hyperparameters on the effectiveness of LUNA. The
metrics used for evaluation in this study are summarized in
Table 1 and Table 2.

4.2.2 Subject Trustworthiness Perspective
To better understand the effectiveness of the proposed
framework across diverse tasks, we select a set of chal-
lenging and representative datasets. Mainly, as described in
Section 2.2, we assess the quality of the abstract model from
three trustworthiness perspectives: Out-of-Distribution De-
tection, Adversarial Attack, and Hallucination. These three
perspectives are widely observed and critical trustworthi-
ness concerns of LLMs [9], [110], [137], [149], [155], [156].
Each of these has unique patterns (formats) that are capable
of investigating both the effectiveness and the generality of
our framework.
Out-of-Distribution Detection. We adapt the sentiment
analysis dataset created by Wang et al. [9]. It is based on the
SST-2 dataset [157] and contains word-level and sentence-
level style transferred data, where the original sentences
are transformed to another style. It contains a total of 9,603
sentences, with 873 in-distribution (ID) data and 8,730 OOD
data.
Adversarial Attack. For the adversarial attack dataset, we
use AdvGLUE++ [9], which consists of three types of tasks
(sentiment classification, duplicate question detection, and
multi-genre natural language inference) and five word-level
attack methods. It contains 11,484 data in total.
Hallucination. For the hallucination dataset, we choose
TruthfulQA [137], which is designed for measuring the
truthfulness of LLM in generating answers to questions. It
consists of 817 questions, with 38 categories of falsehood,
e.g., misconceptions and fiction. The ground truth of the
answers is judged by fine-tuned GPT3-13B models [137] to
classify each answer as true or false.
Semantic Binding Across Perspectives. In hallucination
detection, we bind semantics directly to states based on the

9

TABLE 3: Summary of Abstract Model Settings for Abstract Model Construction. There are 180 hyper-setting configurations
in total. †For Grid-based partition, the actual state number is calculated as the stated number to the power of the PCA components.

Partition Model Type PCA Components #State† Additional Parameters #Settings

Grid DTMC {3, 5, 10} {5, 10, 15} History Step: {1, 2, 3} 27
Grid HMM {3, 5, 10} {5, 10, 15} History Step: {1, 2, 3}; HMM Comp: {100, 200, 400} 81
Cluster DTMC {512, 1024, 2048} {200, 400, 600} Cluster: {GMM, KMeans} 18
Cluster HMM {512, 1024, 2048} {200, 400, 600} Cluster: {GMM, KMeans}, HMM Comp: {100, 200, 400} 54

TABLE 4: RQ1: Statistical differences between distributions
of normal and abnormal and Significant Proportion (the pro-
portion of significant models over all models with diverse
hyperparameter settings).

Perspective p-value Significant Proportion

OOD 1.02e-15 51%
Adversarial 6.37e-35 51%
Hallucination 4.82e-206 20%

truthfulness of the LLM’s output answer [137], [158]. The
truthfulness is the output of a finetuned GPT3-13B (GPT-
judge) that is specified for estimating the degree of whether
each answer is true or false, which is the common practice
on TruthfulQA [137], In the OOD sample and adversarial
attack detection task, instead of state-level binding, we focus
on the transition probability as the semantic representation.

4.3 RQ1: Can the abstract model differentiate the nor-
mal and abnormal behaviors of LLM?

Evaluation Design: Abnormal behavior awareness is a vital
step for LLM analysis and interpretation. Therefore, RQ1
is devoted to conducting a preliminary investigation to
acknowledge whether the constructed abstract models have
the potential to characterize the behavior of the LLM from
the lens of abnormality.

In particular, as mentioned in Section 4.1, our analy-
sis centers on inspecting the distribution difference of the
transitions probabilities from the abstract models between
the normal and abnormal instances. We consider transitions
probabilities as valid representatives of models’ character-
istics since they encapsulate the intrinsic and irreducible
nature of state transition.

To answer RQ1, we assess the difference between normal
and abnormal data qualitatively and quantitatively from three
distributions: 1) the normal instances in the training
dataset, 2) the normal instances in the test dataset, and
3) the abnormal instances in the test dataset. The normal
instances in the training datasets and test datasets are
considered to have similar distributions and represent the
corpus that the LLM should properly process. In contrast,
the abnormal instances in the test dataset are the contexts
that are out of the scope of the training data. We consider
the subject LLM to have abnormal behavior characteristics
(e.g., faulty outputs, irregular hidden states behaviors)
when processing these different instances. Furthermore,
we expect to capture such dissimilarity in the abstract
models from the lens of transition probabilities, which
can reveal the consistency between the subject LLM and
the corresponding abstract model. The hyperparameters
of the abstract model is randomly picked from the
hyperparameter space. For the qualitative assessment,

we rely on the Kernal Density Estimation (KDE) [159]
plot to observe the distribution of transition probabilities
between three types of instances. In terms of quantitative
assessment, we investigate the statistical significance of
three distributions using Mann-Whitney U test [160] (i.e.,
p-value).

Results: We detail the distribution difference assessment
from the KDE plot and the Mann-Whitney U test, respec-
tively, and summarize the findings at the end of this sub-
section.

• Qualitative Assessment. Figure 5 illustrates the distri-
bution of transition probabilities w.r.t. three types of
instances (normal instances in training data, normal in-
stances in testing data, and abnormal instances in test
data) across three different tasks. Among all three tasks,
the distributions of the transitions are highly aligned for
normal instances in the training and test data. Namely,
the abstract model has consistent behavior characteristics
when dealing with normal instances. In terms of the nor-
mal and the abnormal instances, we also notice divergent
distribution shapes in SST-2 and AdvGLUE++ datasets.
This visual observation supports the proposed assertion
that it is possible to distinguish normal and abnormal
instances from the distribution of transition probabilities
of the abstract model.

• Quantitative Assessment. We further conduct statistical
significant tests to consolidate the visual findings from
the KDE plots. As presented in Table 4, we show the p-
value of the randomly picked model and the significant
proportion, which represents the proportion of all models
with different hyperparameter settings (180 hyperparam-
eter settings in total) that resulted in a p-value less than
0.05. We find that in OOD, 51% of the abstract models
satisfies the significance difference, while the proportions
of the adversarial attack and hallucination are 51% and
20%, respectively. This indicates that the abstract models
on OOD show a greater difference between the normal
and abnormal instances.

In general, our results validate our initial hypothesis and
underline the capability of the abstract model to discover the
abnormal behavior of the LLM. The transition probabilities
of the abstract model are aligned with normal instances and
have significant differences while abnormal instances are
encountered.

Answer to RQ1: Our experiment results confirm that
the abstract model has the potential to characterize the
anomalies of the subject LLM.

10

4.4 RQ2: How do different modelling techniques and
corresponding configurations impact the quality of the
abstract model?

As shown in RQ1, the abstract model is capable of detecting
abnormal behavior of the subject LLM. In RQ2, we further
examine what factors impact the quality of the abstract
models from the state abstraction and trace construction
perspectives. We first study the hyperparameters, including
PCA dimensions, history steps, partition techniques (GMM,
K-means, and Grid), and modelling methods (DTMC and
HMM), as shown in Table 3. Specifically, we aim to un-
derstand how these factors can benefit the general model
analysis in terms of metrics, which include Succinctness
(SUC), Stationary Distribution Entropy (SDE), Sink State
(SS), Sensitivity (SEN), Coverage (COV), and Perplexity
(PERP).

We normalized the metric values based on rank, in-
dicating their relative ranking across metrics rather than
absolute magnitudes. A higher normalized value means
a better rank compared to other settings in the metric.
Detailed metrics values for different PCA dimensions, clus-
ter methods, and model types are available at our web-
site https://sites.google.com/view/llm-luna.

4.4.1 RQ2.1: How is the state abstraction correlated with
abstract model-wise evaluation metrics?
Evaluation Design: As mentioned in Section 3.2, we con-
duct a series of dimension reduction and state abstraction
techniques to decompose and narrow down the large-scale
concrete state space of the LLM. Specifically, We apply PCA
for dimension reduction on collected concrete states from
the subject LLM. One crucial parameter of PCA is the num-
ber of components retained for the abstract state; therefore,
we select three different levels of component numbers (Low,
Medium, and High) to investigate how the degree of dimen-
sion reduction impacts the quality of the abstract model. It
is worth mentioning that we set the PCA components to
three comparative levels instead of concrete numbers due
to the different state aggregation mechanisms performed
by the three partition methods. Namely, a number of PCA
components processable by GMM may not be feasible in
terms of the Grid method; thus, for each state partition
method, we arrange the PCA components to comparative
levels to investigate its effect on the quality of the model.
Specifically, as shown in Table 3, we select {512, 1024, 2048}
as corresponding low, medium, and high PCA component
settings for cluster-based state partition method (KMeans
and GMM), and {3, 5, 10} for grid-based method.

State partition techniques are subsequently applied to
aggregate the concrete states with close spatial distance
into one abstract state. We utilize three commonly used
state partition approaches, e.g., GMM, KMeans and Grid,
to probe their effectiveness in mapping the large continuous
concrete state space onto a compact discrete state space. To
eliminate the potential impact of the different dimension
settings from PCA, we conduct each state partition method
on different PCA component settings and take the average
performance across all PCA settings as the final result.

In terms of the abstract model quality measurement, we
adopt the abstract model-wise metrics specified in Section 3.4

to inspect the characteristics of different abstraction settings
from various aspects.

Results: From Figure 6 and Figure 7, we acknowledge
the following findings about PCA dimensions and state
abstraction approaches:

Fig. 6: RQ2.1: Model-wise metrics w.r.t. PCA dimension
(number of components).

Fig. 7: RQ2.2: Model-wise metrics w.r.t. state partition
method.

• PCA Components: Intuitively, Figure 6 shows that an
increase in the number of PCA components has a pos-
itive impact on the perplexity but adversely affects the
coverage and succinctness across three tasks. The per-
plexity measures the quality of the abstract model from
the degree of well-fitting to the training distribution and
the unpredictability within its transitions, respectively.
Meanwhile, coverage and succinctness reveal the level
of state space exploration and state/transition reduction
rate. Therefore, we consider a higher number of PCA
components can reinforce the construction of the abstract
model through distribution matching (perplexity). Nev-
ertheless, overly persevered state features (PCA compo-
nents) produce a relatively large state space after the
abstraction, which can prohibit the abstract model from
effectively narrowing the concrete state space (succinct-
ness), fully exploring the abstract state space with limited
training data (coverage) and characterizing the transition
properties of the subject LLM (perplexity).

• Cluster-based method: Regardless of the PCA dimension,
clustering-based methods, KMeans, and GMM usually
present the highest or near-highest values regarding cov-
erage and succinctness across three datasets, as shown
in Figure 7. We consider the clustering-based state ab-
straction methods (KMeans and GMM) to be more effi-
cient in aggregating the concrete states. Namely, unlike
the grid-based approaches, the clustering-based methods
only create new abstract states if a group of concrete
states is gathered within certain spatial distances; thus,

11

https://sites.google.com/view/llm-luna

less abstract state space is generated for sparse concrete
states.
GMM’s performance typically lies between KMeans and
Grid. It displayed moderate mean values for most met-
rics, such as coverage and succinctness. In addition, we
also observe that KMeans achieves a higher score on
the sensitivity metric than GMM. As mentioned in Sec-
tion 3.4, the sensitivity metric measures the change of
abstract states against small perturbations on concrete
states. Thus, the abstract states formed by KMeans can
retroactively signify the small perturbations that may
drastically alter the outputs of the LLM. Moreover, both
KMeans and GMM exhibit some drawbacks in terms
of stationary distribution entropy and perplexity (SST-
2 and TruthfulQA datasets). Such findings indicate that
the clustering-based state abstraction methods may have
limitations to inherently preserve the training distribution
and the deterministic nature of the transitions in the LLM.
Furthermore, we find that clustering-based methods have
higher correlations compared to the grid-based method.
It is worth mentioning that, as illustrated in Figure 5, the
transition distributions of the abstract models across three
datasets support this finding. In particular, the difference
in the transition distributions between the normal and
abnormal instances in TruthfulQA and SST-2 are relatively
more significant (Table 4). Therefore, KMeans and GMM
fall short of characterizing and reflecting such distribution
differences in the constructed abstract states.

• Grid-based method: The grid-based approach performs
better than cluster-based methods in terms of perplexity
(except for TruthfulQA) and stationary distribution en-
tropy while having comparable scores on sensitivity and
sink states. It implies that the grid partition method has
advantages in imitating the distribution and transition
characteristics of the subject LLM.
Additionally, we notice a performance drop in coverage
and succinctness, and we consider such limitations to be
caused by the nature of the grid method. Namely, the
grid-based method uniformly partitions the concrete state
space along each dimension; therefore, an abstract state
may be created even if no concrete states fall in this grid
partition. If the dimension of the concrete space is high
(depends on PCA) but the concrete states are densely
distributed to certain areas, there will be a large portion of
void abstract states generated (e.g., no abstract states and
transitions exist in certain areas of abstract state space).
Also, the perplexity of the Grid-based method shows a
degradation on TruthfulQA compared to AdvGLUE++
and SST-2, which can be caused by the similar distribution
between the normal and abnormal transitions (as illus-
trated by Figure 5).

Answer to RQ2.1: In our evaluation, a specific de-
sign on the number of PCA components is needed to
balance the trade-offs among different quality metrics.
The cluster-based method usually has advantages in
state space reduction and exploration but falls short of
preserving the distribution and deterministic nature of
transitions. The grid-based method shows the opposite
features.

4.4.2 RQ2.2: How is the model construction method corre-
lated with abstract model-wise evaluation metrics?

Fig. 8: RQ2.2: Model-wise metrics w.r.t. Abstract Model
Type.
Evaluation Design: Different types of model construction
approaches are crucial regarding the quality of the abstract
model as they concatenate the abstract states and reproduce
the transition property of the subject LLM. In this RQ, we
take DTMC and HMM as two candidate model construction
methods to investigate their impact on the abstract model-
wise properties.

Results: After analyzing the results in Figure 8, we have
several findings for model construction methods. Despite
the number of PCA components and state abstraction tech-
niques, DTMC shows close or beyond performance on
succinctness, coverage, sensitivity, sink state, and perplexity
(except AdvGLUE++). In terms of HMM, generally, HMM
lags behind DTMC in most metrics except stationary distri-
bution entropy and sensitivity. We consider such differences
can be attributable to the processes of building abstract
transitions. Specifically, DTMC maps the abstract transitions
directly according to the existence of concrete transitions,
whereas HMM leverages a fitting algorithm to compute
the transition probability with a maximized likelihood of
observations.

The reason for HMM’s relatively inadequate perfor-
mance on model-wise metrics might be the two-level state
abstraction mechanism, i.e., fit the hidden states and tran-
sitions on top of the abstract state. Conversely, the direct
transition abstraction of DTMC can be more effective in
tracing back the transition characteristics of the LLM. Con-
sidering the specialties of LLMs, a desired model construc-
tion method should effectively and efficiently capture and
characterize the transition properties of the LLM for specific
tasks.

Answer to RQ2.2: In our evaluated settings, the choice
between DTMC and HMM largely hinges on the spe-
cific metric of interest. DTMC’s versatile performance
makes it a premier choice for downstream applications.

4.5 RQ3: How does the framework perform across tar-
get trustworthiness perspectives, and how is its perfor-
mance correlated with both semantics-wise and abstract
model-wise metrics?
In this RQ, we first want to examine the effectiveness of our
model-based analysis, i.e., whether it could detect abnormal
behavior from the three studied trustworthiness perspec-
tives. Additionally, we are also interested in investigating

12

the correlation between the newly proposed semantic-wise
metrics and the analysis performance. Recall that semantics-
wise metrics are designed to measure the quality of the
abstract model in terms of semantics, which is supposed to
have strong correlations with the analysis task performance.
We want to confirm this point in this RQ. This exploration
can also be used to guide the selection of a good abstract
model for the analysis. Similarly, the correlation between
abstract model-wise metrics and the performance is exam-
ined for the model selection procedure.

4.5.1 RQ3.1: How does our framework perform on trust-
worthiness perspectives regarding semantics-wise metrics?
Evaluation Design: In RQ3.1, we first try to assess the
effectiveness of the model-based analysis across three trust-
worthiness perspectives, by checking the performance of the
abnormal behavior detection (as described in Section 3.5).
We choose Area Under the Receiver Operating Characteris-
tic Curve (ROC AUC) [151], as the metric to evaluate the
performance of the detection task. Typically, if the ROC
AUC of a method is higher than 0.5, we consider it an ef-
fective one (better than random). We check the performance
of detection based on models with different hyperparameter
settings (a total of 180 settings) and show their performance
(mean, maximum, minimum, median, standard deviation,
and variation). By initially examining the ROC AUC, we
gain a preliminary understanding of the effectiveness of our
model-based analysis over the hyperparameter space.

Moreover, we want to examine the correlation between
the newly introduced semantic-wise metrics and ROC AUC
by computing the Pearson correlation coefficient [161] be-
tween them. To be more specific, we go over all hyper-
parameter settings, and for each specific hyperparameter
setting, we generate a corresponding abstract model, de-
termine its ROC AUC for every trustworthiness perspec-
tive and calculate the semantic-wise metrics for these set-
tings. Each ROC AUC is correlated with the corresponding
semantic-wise metrics, which can be computed by the Pear-
son coefficient between the ROC AUC and the values of
each semantic-wise metric. Recall that semantics represent
the level of satisfaction of the LLM w.r.t. the trustworthiness
perspective. This investigation helps us understand whether
the newly proposed semantics-wise metrics have the poten-
tial to indicate the performance of the analysis procedure to
some extent. Recall that the semantics-wise metrics include
Preciseness (PRE), Entropy (ENT), Surprise Level (SL), n-
gram Derivative Trend (NDT), Instance Value Trend (IVT),
and n-gram Value Trend (NVT).

TABLE 5: RQ3.1: The ROC AUC for different datasets. Max:
Maximum, Min: Minimum, Std. Dev.: Standard Deviation,
Var.: Variance.

Perspective Mean Max Min Median Std. Dev. Var.

OOD 0.55 0.65 0.50 0.53 0.04 0.00
Adversarial 0.59 0.83 0.50 0.56 0.09 0.01
Hallucination 0.67 0.71 0.55 0.69 0.04 0.00

Results: Table 5 shows the statistics of ROC AUC over all
models with different hyperparameter settings. The per-
formance of detecting OOD samples is worse than the

TABLE 6: RQ3.1: Top 5 Settings for Each Perspective and
ROC AUC

Perspective PCA Partition #State Model ROC AUC

OOD

1024 GMM 200 DTMC 0.65
512 GMM 512 DTMC 0.64
5 Grid 1.0e+5 DTMC 0.63
10 Grid 1.0e+10 DTMC 0.62
512 GMM 600 DTMC 0.62

Adversarial

10 Grid 1.5e+11 DTMC 0.83
10 Grid 1.0e+11 DTMC 0.80
10 Grid 1.0e+11 DTMC 0.79
10 Grid 1.0e+11 DTMC 0.76
5 Grid 1.5e+6 DTMC 0.75

Hallucination

3 Grid 125 DTMC 0.71
3 Grid 1000 DTMC 0.71

1024 GMM 600 DTMC 0.71
2048 KMeans 400 DTMC 0.71
2048 GMM 600 DTMC 0.70

TABLE 7: RQ3.1: Pearson Coefficient of Semantic–wise Met-
rics with respect to ROC AUC.

Perspective PRE ENT SL NDT IVT NVT

OOD 0.94 0.34 0.14 -0.25 -0.25 -0.34
Adversarial 0.95 -0.59 -0.18 0.48 -0.19 -0.75
Hallucination 0.81 -0.07 -0.18 -0.38 -0.03 0.51

other tasks, with the lowest mean (0.55), maximum (0.65),
and median (0.53) ROC AUC, which is reasonable, as the
OOD samples only differ very slightly from the original
one and are hard to be detected. Moreover, the maximum
performance of adversarial sample detection achieves the
highest results among all tasks (0.83). This conforms to the
result of RQ1 that the significant proportion of models built
on adversarial dataset is higher than the others, indicating
that adversarial dataset is intrinsically easier for abnormal
behavior detection and our model indeed can catch the
difference between normal and abnormal behavior. We can
also see that the data is concentrated, with almost zero
variance and a small standard deviation (less than 0.1).

Table 6 shows the experimental result of the top-5 perfor-
mance with their hyperparameters setting of the detection
tasks. We can see that all top-5 models are DTMC. The
reason for the unsatisfying performance of HMM might
be the two-layer state abstraction, i.e., HMM learns the
hidden states on the abstract states. For adversarial sample
detection, the best ROC AUC is 0.83, with a PCA dimension
of 10 and grid partition of DTMC, while the ROC AUC of
OOD sample detection and hallucination are 0.65 and 0.71,
respectively. We conclude that our model-based abnormal
behavior detection is effective, as it is higher than the
random approach (with ROC AUC 0.5).

For the correlation analysis, the Pearson coefficient for
each semantic-wise metric with respect to the ROC AUC
values for different abstract model settings is presented in
Table 7. We have the following observations. Firstly, seman-
tics preciseness (PRE) and ROC AUC have a strong positive
correlation (0.94, 0.95, and 0.81 for three tasks), which
suggests the necessity of building a semantically precise for
getting good analysis performance. In addition, we can see
some mixtures of positive and negative correlations, e.g.,
n-gram derivative trend (NDT) and n-gram value trend

13

(NVT), in different datasets, which indicates that in practice,
the users should analyze different metrics accordingly for
selecting appropriate hyperparameters, as they might show
diverse correlations to the final analysis task. There are also
metrics that show weak correlations, e.g., the surprise level
(SL) for three tasks are 0.14, �0.18, and �0.18 respectively.

Answer to RQ3.1: Our model-based abnormal behavior
detection is effective in three trustworthiness perspec-
tives. The semantics-wise metrics also show different
correlations with the analysis performance in different
tasks, except for preciseness.

TABLE 8: RQ3.2: Pearson coefficient of model–wise Metrics
w.r.t. ROC AUC. SUC: Succinctness, COV: Coverage, SEN:
Sensitivity, SS: Sink State, PERP: Perplexity, and SDE: Sta-
tionary Distribution Entropy

Perspective SUC COV SEN SS PERP SDE

OOD -0.35 -0.33 0.05 0.35 0.46 0.27
ADV -0.38 -0.33 0.04 0.34 0.46 0.27
Hallucination 0.02 0.06 0.20 0.04 -0.08 -0.44

4.5.2 RQ3.2: How is the performance of the framework
correlated with the abstract model-wise metrics?
Evaluation Design: In RQ3.2, we examine the correlation
between the abstract model-wise metrics and ROC AUC by
computing the Pearson correlation coefficient [161] between
them. Our aim is to understand the correlation between the
performance (Table 8) and their corresponding model-wise
metrics. Identifying this correlation can help us choose the
abstract model with potentially good performance based on
abstract model-wise metrics in the future.

Results: The correlation is shown in Table 8. After analyzing
the correlations between ROC AUC and abstract model-
wise metrics, we have several findings. Similar to the find-
ing in RQ3.1, some metrics and ROC AUC have different
correlations for different trustworthiness perspectives, e.g.,
succinctness (SUC) and perplexity (PERP). The sensitivity
(SEN) of the model has weak correlations with the perfor-
mance, as the Pearson coefficient is lower than 0.3. This
difference highlights the importance of considering diverse
metrics as performance indicators for a comprehensive as-
sessment.

Answer to RQ3.2: Similar to semantics-wise metrics,
the abstract model-wise metrics exhibit different corre-
lations with the analysis performance in different do-
mains as well. In practice, the user could use different
metrics combinations to guide the model selection in
order to have a comprehensive analysis performance.

5 DISCUSSION

Abstract Model Construction for LLM. Some research
works have demonstrated that a well-constructed abstract
model can behave as an indicator to reveal the internal
behavior of the target neural network model [29], [54], [57],
[121], [126]. Adequate model construction techniques are

vital to retroactively reflect the corresponding characteristics
of the studied system. Nevertheless, considering the very
large model size and the distinct self-attention mechanism
of LLMs, it is still unclear to what extent existing meth-
ods are effective on LLMs. Hence, our framework, LUNA,
collaborates three state abstraction methods and two model
construction techniques with a total of 180 different param-
eter configurations to extensively explore the effectiveness
of popular model-based analysis approaches.

From the evaluation results, we find that cluster-based
state partition methods (KMeans, GMM) and the grid-based
method have distinct advantages on different model quality
measurement metrics. Meanwhile, in terms of the methods
of model construction, DTMC exhibited close or beyond
performance on most of the metrics than HMM, which im-
plies it is a potential candidate to model the state transition
features of LLMs. It is worth noting that the efficacy of
the abstraction and modelling techniques varies on tasks
and trustworthiness perspectives. For instance, KMeans gets
superior performance sores on Succinctness and Coverage
on both TruthfulQA and SST-2 datasets but relatively inade-
quate performance on AdvGLUE++ dataset. Such a finding
signifies that explicit selection of methods and appropriate
parameter tuning are necessary to maximize the effective-
ness of existing techniques regarding abstract model con-
struction. Therefore, advanced and LLM-specific abstract
model construction techniques are called to capture and
represent the behavior characteristics of LLMs regardless of
types of tasks and trustworthiness perspectives.
Abstract Model Quality Measurement. In this work, we
tried our best and chose as many as 12 metrics to initiate
a relatively comprehensive understanding of the quality of
the constructed model from both abstract model-wise and
semantics-wise. Particularly, abstract model-wise metrics
assess the intrinsic properties of the model regardless of
subject trustworthiness perspectives, such as the stability of
the model and the degree of well-fitting to the distribution
of training data. We notice that Coverage and Succinctness,
which measure the level of compression of the abstract
model, provide more insights for dimension reduction and
abstract state partition. Moreover, Stationary Distribution
Entropy, Perplexity and Sink State make more efforts to
guide the selection of model construction methods and
subsequent parameter tuning. Such metrics help to enhance
the quality of the model towards better training distribution
fitting and the ability against small perturbations.

In contrast, semantics-wise metrics measure the quality
of the model from the angle of the degree of satisfaction
w.r.t. trustworthiness perspectives. In particular, from Sec-
tion 4.5, we notice that Preciseness, Entropy and n-gram
Value Trend are more correlated with the performance of
the model regarding different trustworthiness perspectives.
Some metrics may have distinct adaptabilities on certain ap-
plications. For example, Surprise Level and n-gram Deriva-
tive Trend have finer effectiveness in describing the quality
of the model on adversarial and hallucination detection.

In general, different metrics are needed to collaboratively
guide the construction of the abstract model and secure
the quality from diverse aspects. Also, some metrics are
potentially fit to tackle specific downstream tasks or trust-
worthiness perspectives; thus, more research is called to

14

prospect the explicit metrics for particular applications or
quality requirements.
Model-based Quality Assurance for LLM. The fast-
growing popularity of LLMs highlights the escalating in-
fluence of LLMs across academia and industry [5], [7], [162].
With the witness to the adoption of LLMs in a large spec-
trum of practical applications, LLMs are expected to carry
as foundation models to boost the software development
lifecycle in which trustworthiness is critical. Namely, quality
assurance techniques explicitly in the context of LLMs are
of urgent need to enable the deployment of LLMs on more
safety, reliability, security and privacy-related applications.

Our framework LUNA aims to provide a general and
versatile platform that assembles various modelling meth-
ods, downstream tasks and trustworthiness perspectives to
safeguard the quality of LLMs. Moreover, considering the
extensibility of the framework, LUNA is expected to behave
as a foundation that enables the following research to im-
plement new advanced techniques for more diverse tasks
across different domains. The results from Section 4 confirm
that the abstract model can act as a beacon to disclose
abnormalities in the LLM when generating responses to
different inputs. Specifically, the abstract model extracts and
inspects the inner behavior of the LLM to detect whether
it is under unintended conditions that can possibly produce
nonfactual or erroneous outputs. The model embeds seman-
tics w.r.t. different trustworthiness perspectives to extend its
capability to tackle diverse quality concerns. In addition, we
consider our framework can play roles in extensive quality
assurance directions, such as online monitoring [163]–[166],
fault localization [167], [168], testing case generation [19],
[21], [169], [170] and output repair [28], [171], [172]. For
instance, by leveraging the trajectories of the states and cor-
responding semantics w.r.t. a specific output, it is possible to
trace back and precisely localize the faulty segments within
the output tokens.

In this paper, we take an early step to present a
model-based LLM analysis framework, LUNA, to initiate
exploratory research towards the quality assurance of LLMs.
Our experiment results show that the abstract model can
capture the abnormal behaviors of the LLM from its hidden
state information. We conduct a series of modelling tech-
niques with a diverse set of quality measurement metrics
to deliver a comprehensive understanding of the capability
and effectiveness of our framework. Hence, we find that
LUNA shows performant abilities to detect the suspicious
generations of LLMs w.r.t. different trustworthiness per-
spectives.

6 THREATS TO VALIDITY

In this Section, we discuss the threats that may affect the
validity of our study and the actions we have taken to
mitigate them.
Internal Threats. The configurations in state abstraction and
model construction can be an internal threat that impacts
our evaluation results. A satisfactory abstract model should,
on the one side, maximally narrow down the concrete
state space to make it more compact and processable; on
the other side, form abstract states that are representative
of distinct LLM behaviors. To mitigate this threat, in this

study, we propose a total of 180 configuration settings that
may affect the performance of the abstract model to obtain
a comprehensive and constructive understanding of how
different parameter configurations impact the effectiveness
of the abstract model.
External Threats. The generality of our framework to other
LLMs, tasks and trustworthiness perspectives beyond this
study can be an external threat. In light of different LLM
structures, output types and task requirements, our re-
sults may not always be applicable to other scenarios. To
mitigate this threat, we select the three currently widely
concerned trustworthiness perspectives on three different
datasets to conduct the experiments. Likewise, multiple
modelling techniques and evaluation metrics are enclosed
in our framework to enhance its applicability to other trust-
worthiness perspectives and applications.
Construction Threats. It is possible that our evaluation
metrics may not fully characterize all possible performance
aspects of the model. To mitigate this threat, we investigate
a large number of metrics of model quality measurements
from previous works [54], [121], [126], [138], [139], and
carefully select twelve different metrics from two categories:
abstract model-wise and semantics-wise. The former mea-
sures the quality of the model from the angles of the level
of abstraction, distribution fit and sensitivity, etc; the latter
evaluates the model performance based on the level of
satisfaction w.r.t. different trustworthiness. By incorporating
these metrics, we tried our best to deliver an adequate
assessment.

7 RELATED WORK

7.1 Quality Assurance of LLM
Quality assurance in deep learning-driven NLP software
has recently garnered significant interest from industry and
academia. On one side, related research seeks to empir-
ically evaluate the trustworthiness of these models more
thoroughly and comprehensively. Meanwhile, there is a
concerted demand and push toward devising advanced
techniques to predict failures, identify ethical concerns, and
enhance various abilities of current models.

Regarding empirical evaluation, some benchmarks have
been proposed, addressing factual consistency [137], [149],
[173], [174], robustness [110], [175], toxicity [176], and hal-
lucination [149], [156] in tasks like QA and text sum-
marization. These benchmarks comprise datasets that are
either human-labeled [149], [174], extracted from external
resources [156], [173], transformed from other datasets [110],
[175], or labeled/generated by AI models [137], [176]. While
many studies target specific AI model facets for select tasks,
the multifaceted nature of LLMs warrants broader eval-
uations. Recent research delves into multiple capabilities
of LLMs, encompassing faithfulness of QA [177], security
of generated code [178] and its correctness [179], mathe-
matical capabilities [180], and logical reasoning skills [181].
Notably, HELM [182] stands out as an important study
in this domain. It conducts extensive tests across seven
metrics in 42 scenarios for 30 language models, offering a
comprehensive insight into the current landscape of LLMs.
DecodingTrust [9] is another important benchmark assess-
ment of LLMs that concentrates on diverse perspectives

15

of trustworthiness. In our work, we select two important
salient tasks from this study: adversarial detection and OOD
detection.

These empirical studies reveal that while LLMs excel in
various tasks, they often lack trustworthiness and trans-
parency. To tackle these shortcomings, some recent stud-
ies suggest some promising directions such as data-centric
methods [183]–[186], uncertainty estimation [144], [187]–
[192], controlled decoding [193]–[196], self-refinement [197]–
[201], and leveraging external knowledge during infer-
ence [162], [202]–[206].

Data-centric approaches are model-agnostic and formu-
late related problems as unintended behavior detection.
Typically, these methods gather data and train classifiers to
identify undesired content. A notable instance is OpenAI’s
moderation system, offered as an API service [185]. This
system’s training data encompasses content related to sexu-
ality, hate, violence, self-harm, and harassment. Uncertainty
estimation, often lightweight and black-box in nature, uses
uncertainty scores as indicators for the models’ trustworthi-
ness. Manakul et al. [144], for instance, introduce a black-
box hallucination detection technique based on token-level
prediction likelihood and entropy, while Huang et al. [189]
explore the efficacy of both single and multi-inference un-
certainty estimation methods.

While the above two approaches focus more on de-
tection, the remaining three aim to directly improve the
generated content. Controlled decoding techniques freeze
the base LLM while guiding the text generation to achieve
the desired attributes. Mireshghallah et al. [195], for exam-
ple, propose energy-based models to steer the distribution
of generated text toward desired attributes, such as un-
biased content. Cao et al. [196] suggest employing dead-
end analysis to reduce LLM toxicity. Drawing inspiration
from human introspection, self-refinement methods have
been introduced. Huang et al. [199] instruct LLMs to gen-
erate confident answers for unlabeled questions, which are
then used in further training. Madaan et al. [200] suggest
that LLMs critique and refine their own outputs. Lastly,
LLMs augmented with external databases can address the
”brain-in-the-vat” dilemma [207], leading to more accurate
inferences. Examples include WIKI-based chatbots [204] and
Retrieval-Augmented LLMs [205].

Among the relevant studies, the work by Azaria et
al. [81] and Li et al. [158] bear the closest resemblance to
ours. While the majority of these approaches adopt black-
box methodologies, they try to analyze the relationship
between LLMs’ internal and their trustworthiness. Azaria et
al. utilize the hidden layer activations of LLMs as features to
train a classifier for assessing the truthfulness of generated
content. Li et al. first probe LLMs to find the correlation
between truthfulness and attention heads and subsequently
leverage this insight for inference-time intervention, aim-
ing to produce more accurate responses. In contrast, our
framework emphasizes holistic model extraction and state-
ful analysis, offering a more systematic exploration of the
stateful characteristics inherent to LLMs.

7.2 Model-based Analysis for Stateful DNNs
Interpreting the behavior of stateful deep neural networks is
challenging, considering the potentially countless concrete

states the model can reach and its near black-box nature.
Fortunately, there are already some successful attempts for
the RNN-series, a representative stateful architecture before
the transformer era. Some theoretical research indicates that,
while RNNs are Turing-complete [208], practical constraints
such as finite precision and limited computation time render
them equivalent to finite-state automata (FSA) [209], [210].
These insights potentially bridge the gap between the in-
tricate black-box nature of RNNs and the well-understood
FSAs, which have been rigorously examined in classical
formal theory.

Interestingly, attempts to leverage FSAs for RNN anal-
ysis predate these theoretical explorations, originating as
early as the 1990s. These studies try to first abstract the
concrete (hidden) state space and then build FSAs that try
to mirror RNNs behavior. Omlin et al. introduce a method
to segment the hidden state space into q equal intervals,
with q being the quantization level [118]. Zeng et al. [119]
and Cechin et al. [120] propose to use K-means to cluster
concrete states into abstract states. These pioneering efforts
from the pre-deep learning era paved the way for subse-
quent model-based analysis of more sophisticated RNNs.

The advent of deep learning has ushered in two transfor-
mative shifts in the field: an influx of data and increasingly
complex architectures. Concurrently, the model-based anal-
ysis has also evolved accordingly. These efforts broadly fall
into two categories: those that focus on extracting a trans-
parent surrogate model replicating RNN decisions [56], [60],
[122], [211]–[216] and those emphasizing transition traces
with associated semantic meanings related to downstream
tasks [29], [54], [121], [126], [217].

For the former, one line of research leverages a more
formal way for the FSA extraction, such as using Angluin’s
L
⇤ algorithm [211] and its variant [212] or finding the Han-

kel matrix of a black-box system and constructing weighted
automata from it [213]. These strategies treat RNNs as teach-
ers and craft automata through querying. Alternatively, a
more empirical path focuses on analyzing direct transition
traces derived from training data. For example, Dong et
al. first obtain symbolic states by clustering on concrete
hidden states and build probabilistic automata based on a
learning algorithm [60]. Zhang et al. use similar methods to
build symbolic states but enhance the context-awareness of
the extracted model by compositing adjacent states [122].
Merrill et al. introduce an automata extraction technique
based on state merging, which performs better than k-
means [215]. Hong et al. utilize a transition path matching
method, integrate identified patterns with state merging,
and offer a more systematic approach to constructing au-
tomata [216]. All these methods aim to extract automata for
better consistency with source RNNs.

Rather than creating an exact FSA mirroring a target
DNN’s behavior, stakeholders may prioritize specific prop-
erties of stateful software systems, such as security, safety,
privacy, and correctness. Consequently, some studies focus
more on studying these specific properties and obtaining
insights observed from the extracted FSA instead of seeking
a perfect decision alignment. For instance, DeepStellar [54]
and its successor, Marble [121], delve into the adversarial
robustness of RNNs using discrete probabilistic models.
Conversely, AbASG [217] employs automata for adversarial

16

sequence generation. DeepMemory [126] performs analy-
sis of RNN memorization and its associated security and
privacy implications using semantic Markov models. RN-
NRepair [29] performs repair of an RNN through model-
based analysis and guidance. DeepSeer [218] employs finite
automata as the central methodology for human interactive
design to enable RNN debugging. The diverse successes
of these methods underscore the efficacy of model-based
analysis in stateful DNN systems.

Our work differentiates from the above studies in two
key aspects. Firstly, we endeavor to develop a universal
analysis framework designed for versatile property analysis
across a broad spectrum of tasks in stateful DNN software
systems in a plug-and-play manner. Secondly, our emphasis
lies on the Transformer architecture and the corresponding
LLMs. These models operate on a very distinct mechanism
(e.g. attention mechanism) and adhere to unique training
workflows. Recent studies find that the Transformer has
much better empirical representation power than LSTM
in simulating pushdown automation, calling the need for
adapted analysis methods [219]. On the other hand, various
papers have pointed out that some important capabilities
of the Transformer, including factual associations [220] and
object identification [221], stem from propagating complex
information through tokens, inherently exhibiting stateful
characteristics. While some related studies have investi-
gated the potential of enhancing language models with
finite automata for improved performance [222] or con-
straining their outputs using DFA [223], a comprehensive
model-based analysis and framework remain to be absent.

7.3 LLM and Software Engineering

Recently, a growing number of research works show that
LLMs have already made great potential in various phases
throughout the software production lifecycle. Many re-
searchers and industrial practitioners have investigated and
examined the capabilities of LLMs for a large spectrum of
applications in software engineering domain, such as code
generation [1], [224]–[227], code summarization [228]–[230],
program synthesis [231], [232], test case generation [233]–
[236] and bug fixing [237]–[241].

In particular, Dong et al. [227] leverage ChapGPT to
present a self-collaboration framework for code generation.
Namely, multiple LLMs are assigned with different roles
(i.e., coder, tester, etc.) following a general software devel-
opment schema. Such an LLM-powered self-collaboration
framework achieves state-of-the-art performance in solv-
ing complex real-world code generation tasks. Ahmend et
al. [228] investigate the effectiveness of few-shot training
on LLM (Codex [242]) for code summarization tasks. Their
experiment results confirm that leveraging data from the
same project with few-shot training is a promising approach
to improve the performance of the LLM in code summariza-
tion. Nijkamp et al. [224] release a family of LLMs (CODE-
GEN) trained on both natural language and programming
language data to demonstrate the ability of LLMs on pro-
gram synthesis. In addition, Lemieux et al. [234] incorporate
LLM into the loop to improve search-based software testing
(SBST) for programs being tested through a combination
of test case generation and other techniques. Last but not

least, Sobania et al. [237] study the capability of ChatGPT in
terms of software bug localization and fixing. These works
qualify the potential of LLMs as an enabler and a booster to
accelerate the software production lifecycle.

Despite the promising SE task-handling capabilities by
LLMs, existing works [9], [63], [66], [155], [243], [244] have
also pointed out that the current LLMs could potentially
suffer critical quality issues across different SE tasks. Specif-
ically, developers sometimes find it hard to understand the
code generation process and the code produced by LLMs,
and LLMs have also exhibited incorrect behaviors in gener-
ating suboptimal or erroneous solutions [66]. Such concerns
about the trustworthiness of LLMs and the quality of the
corresponding outcomes greatly hinder further adaptation
and deployment of LLMs on safety, reliability, security
and privacy-related SE applications. Moreover, although a
large body of current works in the SE community focuses
on leveraging LLM to further promote and accelerate SE
applications from different aspects, less attention has been
paid to applying and adapting existing SE methodologies
to safeguard the trustworthiness of LLMs. As the recently
fast-increasing trend of LLM-based techniques for various
key stages of the SE lifecycle, it is recognized that LLM
would potentially play a more and more important role in
the next few years. Therefore, it could be of great importance
to establish an early foundation towards a more system-
atic analysis of LLMs to better interpret their behavior, to
understand the potential risks when using it, and to equip
the researchers and developers with more tangible guidance
(e.g., concrete analysis results and feedback) to facilitate
the continuous enhancement of LLMs for practical usage.
Therefore, to bridge this gap and inspire further research
along this direction, we hope LUNA, as a basic analysis
framework for LLMs, could be helpful for researchers and
practitioners to conduct more deep exploration and ex-
ploitation and to design novel quality assurance solutions
towards approaching trustworthy LLMs in practice.

8 CONCLUSION

In this paper, we propose LUNA, a model-based LLM-
oriented analysis framework, to initiate an early exploration
towards establishing the foundation for the trustworthiness
assurance of LLMs. LUNA is designed to be general and
extensible, and the core of its current version contains
three state abstraction techniques, two model construction
approaches, and as many as twelve quality metrics (as
indicators) to establish a versatile LLM analysis pipeline. A
large-scale evaluation of three trustworthiness perspectives
on three datasets with a total of 180 model configuration
settings is conducted to investigate the effectiveness of
our framework. Our evaluation also performs large-scale
comparative studies to better understand the strengths and
weaknesses of different modelling approaches in terms
of characterizing the internal behavior patterns of LLMs.
Overall, advanced LLM-specific modelling methods are of-
ten needed to effectively and efficiently transparentize and
interpret the behavior characteristics of LLM regardless of
types of tasks and trustworthiness perspectives. Moreover,
our analysis of twelve metrics motivates further inves-
tigation of strategically collaborating different metrics to

17

provide a relatively comprehensive and meticulous qual-
ity measurement for diverse LLM applications. With the
fast-growing trend of industrial adoption of LLMs across
domains, we hope this early-stage exploratory work can
inspire further research along this direction, towards ad-
dressing many challenges to approaching trustworthy LLMs
in the coming era of AI.

REFERENCES

[1] P. Vaithilingam, T. Zhang, and E. L. Glassman, “Expectation
vs. experience: Evaluating the usability of code generation tools
powered by large language models,” in Chi conference on human
factors in computing systems extended abstracts, 2022, pp. 1–7.

[2] C. S. Xia and L. Zhang, “Conversational automated program
repair,” arXiv preprint arXiv:2301.13246, 2023.

[3] W. Zhang, Y. Deng, B. Liu, S. J. Pan, and L. Bing, “Sentiment
analysis in the era of large language models: A reality check,”
arXiv preprint arXiv:2305.15005, 2023.

[4] Y. Zhou, A. I. Muresanu, Z. Han, K. Paster, S. Pitis, H. Chan,
and J. Ba, “Large language models are human-level prompt
engineers,” arXiv preprint arXiv:2211.01910, 2022.

[5] “Chatgpt,” http://chat.openai.com, 2023.
[6] “Gpt4,” https://openai.com/gpt-4, 2023.
[7] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,

T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al.,
“Llama: Open and efficient foundation language models,” arXiv
preprint arXiv:2302.13971, 2023.

[8] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz,
E. Kamar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg et al., “Sparks
of artificial general intelligence: Early experiments with gpt-4,”
arXiv preprint arXiv:2303.12712, 2023.

[9] B. Wang, W. Chen, H. Pei, C. Xie, M. Kang, C. Zhang, C. Xu,
Z. Xiong, R. Dutta, R. Schaeffer et al., “Decodingtrust: A com-
prehensive assessment of trustworthiness in gpt models,” arXiv
preprint arXiv:2306.11698, 2023.

[10] H. Raj, D. Rosati, and S. Majumdar, “Measuring reliability of
large language models through semantic consistency,” arXiv
preprint arXiv:2211.05853, 2022.

[11] B. Wang, S. Wang, Y. Cheng, Z. Gan, R. Jia, B. Li, and J. Liu,
“Infobert: Improving robustness of language models from an in-
formation theoretic perspective,” arXiv preprint arXiv:2010.02329,
2020.

[12] B. AlKhamissi, M. Li, A. Celikyilmaz, M. Diab, and
M. Ghazvininejad, “A review on language models as knowledge
bases,” arXiv preprint arXiv:2204.06031, 2022.

[13] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang,
A. Madotto, and P. Fung, “Survey of hallucination in natural
language generation,” ACM Comput. Surv., vol. 55, no. 12, mar
2023. [Online]. Available: https://doi.org/10.1145/3571730

[14] A. Abid, M. Farooqi, and J. Zou, “Persistent anti-muslim bias
in large language models,” in Proceedings of the 2021 AAAI/ACM
Conference on AI, Ethics, and Society, 2021, pp. 298–306.

[15] J. Maynez, S. Narayan, B. Bohnet, and R. McDonald, “On faithful-
ness and factuality in abstractive summarization,” arXiv preprint
arXiv:2005.00661, 2020.

[16] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David,
C. Finn, C. Fu, K. Gopalakrishnan, K. Hausman et al., “Do as i
can, not as i say: Grounding language in robotic affordances,”
arXiv preprint arXiv:2204.01691, 2022.

[17] S. Wang, Z. Zhao, X. Ouyang, Q. Wang, and D. Shen, “Chatcad:
Interactive computer-aided diagnosis on medical image using
large language models,” arXiv preprint arXiv:2302.07257, 2023.

[18] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated
whitebox testing of deep learning systems,” in proceedings of the
26th Symposium on Operating Systems Principles, 2017, pp. 1–18.

[19] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen, T. Su,
L. Li, Y. Liu et al., “Deepgauge: Multi-granularity testing criteria
for deep learning systems,” in Proceedings of the 33rd ACM/IEEE
international conference on automated software engineering, 2018, pp.
120–131.

[20] J. Kim, R. Feldt, and S. Yoo, “Guiding deep learning system
testing using surprise adequacy,” in 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering (ICSE). IEEE, 2019,
pp. 1039–1049.

[21] X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao, B. Li,
J. Yin, and S. See, “Deephunter: a coverage-guided fuzz testing
framework for deep neural networks,” in Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2019, pp. 146–157.

[22] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li,
Y. Liu, J. Zhao et al., “Deepmutation: Mutation testing of deep
learning systems,” in 2018 IEEE 29th International Symposium on
Software Reliability Engineering (ISSRE). IEEE, 2018, pp. 100–111.

[23] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings
of the 40th international conference on software engineering, 2018, pp.
303–314.

[24] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid,
“Deeproad: Gan-based metamorphic testing and input valida-
tion framework for autonomous driving systems,” in 2018 33rd
IEEE/ACM International Conference on Automated Software Engi-
neering (ASE). IEEE, 2018, pp. 132–142.

[25] H. Wang, B. Ustun, and F. Calmon, “Repairing without retrain-
ing: Avoiding disparate impact with counterfactual distribu-
tions,” in International Conference on Machine Learning. PMLR,
2019, pp. 6618–6627.

[26] M. Sotoudeh and A. V. Thakur, “Correcting deep neural networks
with small, generalizing patches,” in Workshop on Safety and
Robustness in Decision Making, 2019.

[27] H. Zhang and W. Chan, “Apricot: A weight-adaptation approach
to fixing deep learning models,” in 2019 34th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). IEEE,
2019, pp. 376–387.

[28] B. Yu, H. Qi, Q. Guo, F. Juefei-Xu, X. Xie, L. Ma, and J. Zhao,
“Deeprepair: Style-guided repairing for deep neural networks
in the real-world operational environment,” IEEE Transactions on
Reliability, vol. 71, no. 4, pp. 1401–1416, 2021.

[29] X. Xie, W. Guo, L. Ma, W. Le, J. Wang, L. Zhou, Y. Liu, and
X. Xing, “Rnnrepair: Automatic rnn repair via model-based anal-
ysis,” in International Conference on Machine Learning. PMLR,
2021, pp. 11 383–11 392.

[30] Q. Hu, Y. Guo, M. Cordy, X. Xie, L. Ma, M. Papadakis, and
Y. Le Traon, “An empirical study on data distribution-aware test
selection for deep learning enhancement,” ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 31, no. 4, pp.
1–30, 2022.

[31] X. Gao, Y. Feng, Y. Yin, Z. Liu, Z. Chen, and B. Xu, “Adaptive
test selection for deep neural networks,” in Proceedings of the 44th
International Conference on Software Engineering, 2022, pp. 73–85.

[32] Z. Yang, J. Shi, M. H. Asyrofi, and D. Lo, “Revisiting neuron
coverage metrics and quality of deep neural networks,” in 2022
IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2022, pp. 408–419.

[33] V. Riccio and P. Tonella, “When and why test generators for deep
learning produce invalid inputs: an empirical study,” in 2023
IEEE/ACM 45th International Conference on Software Engineering
(ICSE). IEEE, 2023, pp. 1161–1173.

[34] J. Wang, H. Qiu, Y. Rong, H. Ye, Q. Li, Z. Li, and C. Zhang, “Bet:
black-box efficient testing for convolutional neural networks,” in
Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2022, pp. 164–175.

[35] J.-t. Huang, J. Zhang, W. Wang, P. He, Y. Su, and M. R. Lyu,
“Aeon: a method for automatic evaluation of nlp test cases,” in
Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2022, pp. 202–214.

[36] Z. Wei, H. Wang, I. Ashraf, and W.-K. Chan, “Deeppatch: Main-
taining deep learning model programs to retain standard accu-
racy with substantial robustness improvement,” ACM Transac-
tions on Software Engineering and Methodology, 2023.

[37] R. Schumi and J. Sun, “Semantic-based neural network repair,”
arXiv preprint arXiv:2306.07995, 2023.

[38] Y. Zhang, Z. Wang, J. Jiang, H. You, and J. Chen, “Toward
improving the robustness of deep learning models via model
transformation,” in Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering, 2022, pp. 1–13.

[39] Y. Li, M. Chen, and Q. Xu, “Hybridrepair: towards annotation-
efficient repair for deep learning models,” in Proceedings of the
31st ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2022, pp. 227–238.

[40] T. Zohdinasab, V. Riccio, and P. Tonella, “Deepatash: Focused test
generation for deep learning systems,” 2023.

18

http://chat.openai.com
https://openai.com/gpt-4
https://doi.org/10.1145/3571730

[41] T. Zohdinasab, V. Riccio, A. Gambi, and P. Tonella, “Efficient
and effective feature space exploration for testing deep learning
systems,” ACM Trans. Softw. Eng. Methodol., vol. 32, no. 2, mar
2023. [Online]. Available: https://doi.org/10.1145/3544792

[42] N. Humbatova, G. Jahangirova, and P. Tonella, “Deepcrime: from
real faults to mutation testing tool for deep learning,” in 2023
IEEE/ACM 45th International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), 2023, pp. 68–72.

[43] A. Stocco, P. J. Nunes, M. D’Amorim, and P. Tonella, “Third-
eye: Attention maps for safe autonomous driving systems,”
in Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering, 2022, pp. 1–12.

[44] J. Kim, G. An, R. Feldt, and S. Yoo, “Learning test-mutant rela-
tionship for accurate fault localisation,” Information and Software
Technology, p. 107272, 2023.

[45] J. Sohn, S. Kang, and S. Yoo, “Arachne: Search-based repair of
deep neural networks,” ACM Transactions on Software Engineering
and Methodology, vol. 32, no. 4, pp. 1–26, 2023.

[46] J. Kim, N. Humbatova, G. Jahangirova, P. Tonella, and S. Yoo,
“Repairing dnn architecture: Are we there yet?” in 2023 IEEE
Conference on Software Testing, Verification and Validation (ICST),
2023, pp. 234–245.

[47] A. Stocco, M. Weiss, M. Calzana, and P. Tonella, “Misbehaviour
prediction for autonomous driving systems,” in Proceedings of
the ACM/IEEE 42nd international conference on software engineering,
2020, pp. 359–371.

[48] N. Humbatova, G. Jahangirova, and P. Tonella, “Deepcrime:
mutation testing of deep learning systems based on real faults,”
in Proceedings of the 30th ACM SIGSOFT International Symposium
on Software Testing and Analysis, 2021, pp. 67–78.

[49] J. Zhou, F. Li, J. Dong, H. Zhang, and D. Hao, “Cost-effective
testing of a deep learning model through input reduction,” in
2020 IEEE 31st International Symposium on Software Reliability
Engineering (ISSRE), 2020, pp. 289–300.

[50] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hub-
bard, and L. Jackel, “Handwritten digit recognition with a back-
propagation network,” Advances in neural information processing
systems, vol. 2, 1989.

[51] D. E. Rumelhart, G. E. Hinton, R. J. Williams et al., “Learning
internal representations by error propagation,” 1985.

[52] T. Zohdinasab, V. Riccio, A. Gambi, and P. Tonella, “Deephyper-
ion: exploring the feature space of deep learning-based systems
through illumination search,” in Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2021, pp. 79–90.

[53] B. C. Hu, L. Marsso, K. Czarnecki, and M. Chechik, “What
to check: Systematic selection of transformations for analyzing
reliability of machine vision components,” in 2022 IEEE 33rd
International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 2022, pp. 49–60.

[54] X. Du, X. Xie, Y. Li, L. Ma, Y. Liu, and J. Zhao, “Deepstel-
lar: Model-based quantitative analysis of stateful deep learning
systems,” in Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2019, pp. 477–487.

[55] X. Ren, Y. Lin, Y. Xue, R. Liu, J. Sun, Z. Feng, and J. S.
Dong, “Deeparc: Modularizing neural networks for the model
maintenance,” in 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE), 2023, pp. 1008–1019.

[56] I. Khmelnitsky, D. Neider, R. Roy, X. Xie, B. Barbot, B. Bollig,
A. Finkel, S. Haddad, M. Leucker, and L. Ye, “Property-directed
verification and robustness certification of recurrent neural net-
works,” in Automated Technology for Verification and Analysis: 19th
International Symposium, ATVA 2021, Gold Coast, QLD, Australia,
October 18–22, 2021, Proceedings 19. Springer, 2021, pp. 364–380.

[57] J. Song, X. Xie, and L. Ma, “Siege: A semantics-guided safety
enhancement framework for ai-enabled cyber-physical systems,”
IEEE Transactions on Software Engineering, 2023.

[58] X. Xie, J. Song, Z. Zhou, F. Zhang, and L. Ma, “Mosaic: Model-
based safety analysis framework for ai-enabled cyber-physical
systems,” arXiv preprint arXiv:2305.03882, 2023.

[59] R. Pan and H. Rajan, “Decomposing convolutional neural net-
works into reusable and replaceable modules,” in Proceedings of
the 44th International Conference on Software Engineering, 2022, pp.
524–535.

[60] G. Dong, J. Wang, J. Sun, Y. Zhang, X. Wang, T. Dai, J. S.
Dong, and X. Wang, “Towards interpreting recurrent neural

networks through probabilistic abstraction,” in Proceedings of the
35th IEEE/ACM International Conference on Automated Software
Engineering, 2020, pp. 499–510.

[61] H. Qi, Z. Wang, Q. Guo, J. Chen, F. Juefei-Xu, F. Zhang, L. Ma, and
J. Zhao, “Archrepair: Block-level architecture-oriented repairing
for deep neural networks,” ACM Transactions on Software Engi-
neering and Methodology, vol. 32, no. 5, pp. 1–31, 2023.

[62] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
2023.

[63] X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo,
J. Grundy, and H. Wang, “Large language models for software
engineering: A systematic literature review,” 2023.

[64] Y. Charalambous, N. Tihanyi, R. Jain, Y. Sun, M. A. Ferrag, and
L. C. Cordeiro, “A new era in software security: Towards self-
healing software via large language models and formal verifica-
tion,” 2023.

[65] D. Lo, “Trustworthy and synergistic artificial intelligence for
software engineering: Vision and roadmaps,” 2023.

[66] A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sengupta,
S. Yoo, and J. M. Zhang, “Large language models for soft-
ware engineering: Survey and open problems,” arXiv preprint
arXiv:2310.03533, 2023.

[67] R. Luo, L. Sun, Y. Xia, T. Qin, S. Zhang, H. Poon, and T.-Y. Liu,
“Biogpt: generative pre-trained transformer for biomedical text
generation and mining,” Briefings in Bioinformatics, vol. 23, no. 6,
p. bbac409, 2022.

[68] R. Taylor, M. Kardas, G. Cucurull, T. Scialom, A. Hartshorn,
E. Saravia, A. Poulton, V. Kerkez, and R. Stojnic, “Galac-
tica: A large language model for science,” arXiv preprint
arXiv:2211.09085, 2022.

[69] Y. Shen, L. Heacock, J. Elias, K. D. Hentel, B. Reig, G. Shih, and
L. Moy, “Chatgpt and other large language models are double-
edged swords,” p. e230163, 2023.

[70] T. Kocmi and C. Federmann, “Large language models are
state-of-the-art evaluators of translation quality,” arXiv preprint
arXiv:2302.14520, 2023.

[71] E. Kasneci, K. Seßler, S. Küchemann, M. Bannert, D. Dementieva,
F. Fischer, U. Gasser, G. Groh, S. Günnemann, E. Hüllermeier
et al., “Chatgpt for good? on opportunities and challenges of
large language models for education,” Learning and individual
differences, vol. 103, p. 102274, 2023.

[72] D. B. Lenat, “Cyc: A large-scale investment in knowledge
infrastructure,” Commun. ACM, vol. 38, no. 11, p. 33–38, nov 1995.
[Online]. Available: https://doi.org/10.1145/219717.219745

[73] Y. Liu, T. Han, S. Ma, J. Zhang, Y. Yang, J. Tian, H. He, A. Li,
M. He, Z. Liu et al., “Summary of chatgpt/gpt-4 research and
perspective towards the future of large language models,” arXiv
preprint arXiv:2304.01852, 2023.

[74] R. Mao, Q. Liu, K. He, W. Li, and E. Cambria, “The biases of pre-
trained language models: An empirical study on prompt-based
sentiment analysis and emotion detection,” IEEE Transactions on
Affective Computing, 2022.

[75] T. Zhang, F. Ladhak, E. Durmus, P. Liang, K. McKeown, and
T. B. Hashimoto, “Benchmarking large language models for news
summarization,” arXiv preprint arXiv:2301.13848, 2023.

[76] F. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn, “A systematic
evaluation of large language models of code,” in Proceedings
of the 6th ACM SIGPLAN International Symposium on Machine
Programming, 2022, pp. 1–10.

[77] T. Ahmed and P. Devanbu, “Few-shot training llms for
project-specific code-summarization,” in Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engi-
neering, 2022, pp. 1–5.

[78] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term de-
pendencies with gradient descent is difficult,” IEEE transactions
on neural networks, vol. 5, no. 2, pp. 157–166, 1994.

[79] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of
training recurrent neural networks,” in International conference on
machine learning. Pmlr, 2013, pp. 1310–1318.

[80] I. Malkiel, D. Ginzburg, O. Barkan, A. Caciularu, J. Weill, and
N. Koenigstein, “Interpreting bert-based text similarity via ac-
tivation and saliency maps,” in Proceedings of the ACM Web
Conference 2022, 2022, pp. 3259–3268.

[81] A. Azaria and T. Mitchell, “The internal state of an llm knows
when its lying,” arXiv preprint arXiv:2304.13734, 2023.

19

https://doi.org/10.1145/3544792
https://doi.org/10.1145/219717.219745

[82] H. Chefer, S. Gur, and L. Wolf, “Generic attention-model explain-
ability for interpreting bi-modal and encoder-decoder transform-
ers,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2021, pp. 397–406.

[83] X. Li, H. Xiong, X. Li, X. Wu, X. Zhang, J. Liu, J. Bian,
and D. Dou, “Interpretable deep learning: Interpretation, inter-
pretability, trustworthiness, and beyond,” Knowledge and Informa-
tion Systems, vol. 64, no. 12, pp. 3197–3234, 2022.

[84] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT:
Pre-training of deep bidirectional transformers for language
understanding,” in Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers). Minneapolis, Minnesota: Association for
Computational Linguistics, Jun. 2019, pp. 4171–4186. [Online].
Available: https://aclanthology.org/N19-1423

[85] P. He, X. Liu, J. Gao, and W. Chen, “Deberta: Decoding-enhanced
bert with disentangled attention,” arXiv preprint arXiv:2006.03654,
2020.

[86] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen,
O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov,
“Roberta: A robustly optimized BERT pretraining approach,”
CoRR, vol. abs/1907.11692, 2019. [Online]. Available: http:
//arxiv.org/abs/1907.11692

[87] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed,
O. Levy, V. Stoyanov, and L. Zettlemoyer, “BART:
Denoising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension,” in
Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Online: Association for Computational
Linguistics, Jul. 2020, pp. 7871–7880. [Online]. Available:
https://aclanthology.org/2020.acl-main.703

[88] Y. Tay, M. Dehghani, V. Q. Tran, X. Garcia, J. Wei,
X. Wang, H. W. Chung, D. Bahri, T. Schuster, S. Zheng,
D. Zhou, N. Houlsby, and D. Metzler, “UL2: Unifying
language learning paradigms,” in The Eleventh International
Conference on Learning Representations, 2023. [Online]. Available:
https://openreview.net/forum?id=6ruVLB727MC

[89] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer
learning with a unified text-to-text transformer,” The Journal of
Machine Learning Research, vol. 21, no. 1, pp. 5485–5551, 2020.

[90] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al.,
“Language models are few-shot learners,” Advances in neural
information processing systems, vol. 33, pp. 1877–1901, 2020.

[91] M. T. Ribeiro, S. Singh, and C. Guestrin, “” why should i trust
you?” explaining the predictions of any classifier,” in Proceedings
of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, 2016, pp. 1135–1144.

[92] H. Qiu, S. Zhang, A. Li, H. He, and Z. Lan, “Latent jailbreak: A
benchmark for evaluating text safety and output robustness of
large language models,” arXiv preprint arXiv:2307.08487, 2023.

[93] Y. Li, F. Wei, J. Zhao, C. Zhang, and H. Zhang, “Rain: Your
language models can align themselves without finetuning,” arXiv
preprint arXiv:2309.07124, 2023.

[94] A. Helbling, M. Phute, M. Hull, and D. H. Chau, “Llm self
defense: By self examination, llms know they are being tricked,”
arXiv preprint arXiv:2308.07308, 2023.

[95] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman,
and D. Mané, “Concrete problems in ai safety,” arXiv preprint
arXiv:1606.06565, 2016.

[96] D. Hendrycks and K. Gimpel, “A baseline for detecting misclas-
sified and out-of-distribution examples in neural networks,” in
International Conference on Learning Representations, 2017. [Online].
Available: https://openreview.net/forum?id=Hkg4TI9xl

[97] K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified frame-
work for detecting out-of-distribution samples and adversarial
attacks,” Advances in neural information processing systems, vol. 31,
2018.

[98] S. Liang, Y. Li, and R. Srikant, “Enhancing the reliability
of out-of-distribution image detection in neural networks,” in
International Conference on Learning Representations, 2018. [Online].
Available: https://openreview.net/forum?id=H1VGkIxRZ

[99] P. Morteza and Y. Li, “Provable guarantees for understanding
out-of-distribution detection,” in Proceedings of the AAAI Confer-
ence on Artificial Intelligence, vol. 36, no. 7, 2022, pp. 7831–7840.

[100] H. Lang, Y. Zheng, Y. Li, J. Sun, F. Huang, and Y. Li, “A
survey on out-of-distribution detection in nlp,” arXiv preprint
arXiv:2305.03236, 2023.

[101] U. Arora, W. Huang, and H. He, “Types of out-of-distribution
texts and how to detect them,” in Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing. Online and
Punta Cana, Dominican Republic: Association for Computational
Linguistics, Nov. 2021, pp. 10 687–10 701. [Online]. Available:
https://aclanthology.org/2021.emnlp-main.835

[102] J. Ren, J. Luo, Y. Zhao, K. Krishna, M. Saleh,
B. Lakshminarayanan, and P. J. Liu, “Out-of-distribution
detection and selective generation for conditional lan-
guage models,” in The Eleventh International Conference
on Learning Representations, 2023. [Online]. Available:
https://openreview.net/forum?id=kJUS5nD0vPB

[103] A. Kamath, R. Jia, and P. Liang, “Selective question answering
under domain shift,” in Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. Online: Association
for Computational Linguistics, Jul. 2020, pp. 5684–5696. [Online].
Available: https://aclanthology.org/2020.acl-main.503

[104] J. Wang, X. Hu, W. Hou, H. Chen, R. Zheng, Y. Wang, L. Yang,
H. Huang, W. Ye, X. Geng et al., “On the robustness of chatgpt: An
adversarial and out-of-distribution perspective,” arXiv preprint
arXiv:2302.12095, 2023.

[105] K. Krishna, J. Wieting, and M. Iyyer, “Reformulating
unsupervised style transfer as paraphrase generation,” in
Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Online: Association for
Computational Linguistics, Nov. 2020, pp. 737–762. [Online].
Available: https://aclanthology.org/2020.emnlp-main.55

[106] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov,
G. Giacinto, and F. Roli, “Evasion attacks against machine learn-
ing at test time,” in Machine Learning and Knowledge Discovery in
Databases: European Conference, ECML PKDD 2013, Prague, Czech
Republic, September 23-27, 2013, Proceedings, Part III 13. Springer,
2013, pp. 387–402.

[107] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J.
Goodfellow, and R. Fergus, “Intriguing properties of neural net-
works,” in 2nd International Conference on Learning Representations
(ICLR), 2014.

[108] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples,” in International Conference
on Learning Representations, 2015. [Online]. Available: http:
//arxiv.org/abs/1412.6572

[109] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and
D. Mukhopadhyay, “Adversarial attacks and defences: A sur-
vey,” arXiv preprint arXiv:1810.00069, 2018.

[110] B. Wang, C. Xu, S. Wang, Z. Gan, Y. Cheng, J. Gao, A. H.
Awadallah, and B. Li, “Adversarial glue: A multi-task benchmark
for robustness evaluation of language models,” in Advances in
Neural Information Processing Systems, 2021.

[111] S. Goyal, S. Doddapaneni, M. M. Khapra, and B. Ravindran,
“A survey of adversarial defenses and robustness in nlp,” ACM
Computing Surveys, vol. 55, no. 14s, pp. 1–39, 2023.

[112] V. Raunak, A. Menezes, and M. Junczys-Dowmunt, “The curious
case of hallucinations in neural machine translation,” 2021.

[113] A. Rohrbach, L. A. Hendricks, K. Burns, T. Darrell, and K. Saenko,
“Object hallucination in image captioning,” 2019.

[114] P. Koehn and R. Knowles, “Six challenges for neural machine
translation,” arXiv preprint arXiv:1706.03872, 2017.

[115] W. Kryściński, B. McCann, C. Xiong, and R. Socher, “Evaluating
the factual consistency of abstractive text summarization,” arXiv
preprint arXiv:1910.12840, 2019.

[116] B. Bi, C. Wu, M. Yan, W. Wang, J. Xia, and C. Li, “Incorporating
external knowledge into machine reading for generative
question answering,” ArXiv, vol. abs/1909.02745, 2019. [Online].
Available: https://api.semanticscholar.org/CorpusID:202234053

[117] A. Balakrishnan, J. Rao, K. Upasani, M. White, and R. Subba,
“Constrained decoding for neural NLG from compositional
representations in task-oriented dialogue,” in Proceedings of
the 57th Annual Meeting of the Association for Computational
Linguistics. Florence, Italy: Association for Computational
Linguistics, Jul. 2019, pp. 831–844. [Online]. Available: https:
//www.aclweb.org/anthology/P19-1080

[118] C. W. Omlin and C. L. Giles, “Extraction of rules from discrete-
time recurrent neural networks,” Neural networks, vol. 9, no. 1,
pp. 41–52, 1996.

20

https://aclanthology.org/N19-1423
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://aclanthology.org/2020.acl-main.703
https://openreview.net/forum?id=6ruVLB727MC
https://openreview.net/forum?id=Hkg4TI9xl
https://openreview.net/forum?id=H1VGkIxRZ
https://aclanthology.org/2021.emnlp-main.835
https://openreview.net/forum?id=kJUS5nD0vPB
https://aclanthology.org/2020.acl-main.503
https://aclanthology.org/2020.emnlp-main.55
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
https://api.semanticscholar.org/CorpusID:202234053
https://www.aclweb.org/anthology/P19-1080
https://www.aclweb.org/anthology/P19-1080

[119] Z. Zeng, R. M. Goodman, and P. Smyth, “Learning finite state
machines with self-clustering recurrent networks,” Neural Com-
putation, vol. 5, no. 6, pp. 976–990, 1993.

[120] A. L. Cechin, D. Regina, P. Simon, and K. Stertz, “State automata
extraction from recurrent neural nets using k-means and fuzzy
clustering,” in 23rd International Conference of the Chilean Computer
Science Society, 2003. SCCC 2003. Proceedings. IEEE, 2003, pp. 73–
78.

[121] X. Du, Y. Li, X. Xie, L. Ma, Y. Liu, and J. Zhao, “Marble: model-
based robustness analysis of stateful deep learning systems,”
in Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering, 2020, pp. 423–435.

[122] X. Zhang, X. Du, X. Xie, L. Ma, Y. Liu, and M. Sun, “Decision-
guided weighted automata extraction from recurrent neural net-
works,” in Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 35, no. 13, 2021, pp. 11 699–11 707.

[123] Y. Ming, S. Cao, R. Zhang, Z. Li, Y. Chen, Y. Song, and H. Qu,
“Understanding hidden memories of recurrent neural networks,”
in 2017 IEEE conference on visual analytics science and technology
(VAST). IEEE, 2017, pp. 13–24.

[124] “Countable-state markov chains,” https://ocw.mit.edu/
courses/6-262-discrete-stochastic-processes-spring-2011/
01d0892549619cb25d928f15ec7230ed MIT6 262S11 chap05.pdf,
2023.

[125] M. Fan, Z. Si, X. Xie, Y. Liu, and T. Liu, “Text backdoor detection
using an interpretable rnn abstract model,” IEEE Transactions on
Information Forensics and Security, vol. 16, pp. 4117–4132, 2021.

[126] D. Zhu, J. Chen, W. Shang, X. Zhou, J. Grossklags, and A. E. Has-
san, “Deepmemory: model-based memorization analysis of deep
neural language models,” in 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2021,
pp. 1003–1015.

[127] B. Sun, J. Sun, L. H. Pham, and J. Shi, “Causality-based neural
network repair,” in Proceedings of the 44th International Conference
on Software Engineering, 2022, pp. 338–349.

[128] B. Sun, J. Sun, T. Dai, and L. Zhang, “Probabilistic verification of
neural networks against group fairness,” in Formal Methods: 24th
International Symposium, FM 2021, Virtual Event, November 20–26,
2021, Proceedings 24. Springer, 2021, pp. 83–102.

[129] Z. Wei, X. Zhang, and M. Sun, “Extracting weighted finite au-
tomata from recurrent neural networks for natural languages,” in
International Conference on Formal Engineering Methods. Springer,
2022, pp. 370–385.

[130] R. Bro and A. K. Smilde, “Principal component analysis,” Analyt-
ical methods, vol. 6, no. 9, pp. 2812–2831, 2014.

[131] D. A. Reynolds et al., “Gaussian mixture models.” Encyclopedia of
biometrics, vol. 741, no. 659-663, 2009.

[132] K. Krishna and M. N. Murty, “Genetic k-means algorithm,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
vol. 29, no. 3, pp. 433–439, 1999.

[133] S. R. Eddy, “Profile hidden markov models.” Bioinformatics (Ox-
ford, England), vol. 14, no. 9, pp. 755–763, 1998.

[134] L. Rabiner and B. Juang, “An introduction to hidden markov
models,” ieee assp magazine, vol. 3, no. 1, pp. 4–16, 1986.

[135] S. Fine, Y. Singer, and N. Tishby, “The hierarchical hidden markov
model: Analysis and applications,” Machine learning, vol. 32, pp.
41–62, 1998.

[136] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization
technique occurring in the statistical analysis of probabilistic
functions of markov chains,” The annals of mathematical statistics,
vol. 41, no. 1, pp. 164–171, 1970.

[137] S. Lin, J. Hilton, and O. Evans, “Truthfulqa: Measuring how mod-
els mimic human falsehoods,” arXiv preprint arXiv:2109.07958,
2021.

[138] Y. Ishimoto, M. Kondo, N. Ubayashi, and Y. Kamei, “Pafl: Prob-
abilistic automaton-based fault localization for recurrent neural
networks,” Information and Software Technology, vol. 155, p. 107117,
2023.

[139] B. G. Vegetabile, S. A. Stout-Oswald, E. P. Davis, T. Z. Baram, and
H. S. Stern, “Estimating the entropy rate of finite markov chains
with application to behavior studies,” Journal of Educational and
Behavioral Statistics, vol. 44, no. 3, pp. 282–308, 2019.

[140] E. Nummelin, General irreducible Markov chains and non-negative
operators. Cambridge University Press, 2004, no. 83.

[141] N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-Voss,
K. Lee, A. Roberts, T. Brown, D. Song, U. Erlingsson et al.,
“Extracting training data from large language models,” in 30th

USENIX Security Symposium (USENIX Security 21), 2021, pp.
2633–2650.

[142] R. Matinnejad, S. Nejati, L. C. Briand, and T. Bruckmann, “Test
generation and test prioritization for simulink models with
dynamic behavior,” IEEE Transactions on Software Engineering,
vol. 45, no. 9, pp. 919–944, 2018.

[143] G. Gigerenzer and U. Hoffrage, “How to improve bayesian
reasoning without instruction: Frequency formats.” Psychological
review, vol. 102, no. 4, p. 684, 1995.

[144] P. Manakul, A. Liusie, and M. J. Gales, “Selfcheckgpt: Zero-
resource black-box hallucination detection for generative large
language models,” arXiv preprint arXiv:2303.08896, 2023.

[145] Y. Chang, X. Wang, J. Wang, Y. Wu, K. Zhu, H. Chen, L. Yang,
X. Yi, C. Wang, Y. Wang et al., “A survey on evaluation of large
language models,” arXiv preprint arXiv:2307.03109, 2023.

[146] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright,
P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray et al., “Train-
ing language models to follow instructions with human feed-
back,” Advances in Neural Information Processing Systems, vol. 35,
pp. 27 730–27 744, 2022.

[147] E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell,
“On the dangers of stochastic parrots: Can language models be
too big?” in Proceedings of the 2021 ACM conference on fairness,
accountability, and transparency, 2021, pp. 610–623.

[148] Z. Kenton, T. Everitt, L. Weidinger, I. Gabriel, V. Mikulik,
and G. Irving, “Alignment of language agents,” arXiv preprint
arXiv:2103.14659, 2021.

[149] S. Santhanam, B. Hedayatnia, S. Gella, A. Padmakumar, S. Kim,
Y. Liu, and D. Hakkani-Tur, “Rome was built in 1776: A case
study on factual correctness in knowledge-grounded response
generation,” arXiv preprint arXiv:2110.05456, 2021.

[150] Y. Huang, X. Feng, X. Feng, and B. Qin, “The factual inconsistency
problem in abstractive text summarization: A survey,” arXiv
preprint arXiv:2104.14839, 2021.

[151] A. P. Bradley, “The use of the area under the roc curve in the
evaluation of machine learning algorithms,” Pattern recognition,
vol. 30, no. 7, pp. 1145–1159, 1997.

[152] Y. Wang, Y. Kordi, S. Mishra, A. Liu, N. A. Smith, D. Khashabi,
and H. Hajishirzi, “Self-instruct: Aligning language models with
self-generated instructions,” 2023.

[153] W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang,
L. Zheng, S. Zhuang, Y. Zhuang, J. E. Gonzalez, I. Stoica, and
E. P. Xing, “Vicuna: An open-source chatbot impressing gpt-4
with 90%* chatgpt quality,” March 2023. [Online]. Available:
https://lmsys.org/blog/2023-03-30-vicuna/

[154] R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li,
C. Guestrin, P. Liang, and T. B. Hashimoto, “Stan-
ford alpaca: An instruction-following llama model,”
https://github.com/tatsu-lab/stanford alpaca, 2023.

[155] X. Huang, W. Ruan, W. Huang, G. Jin, Y. Dong, C. Wu, S. Ben-
salem, R. Mu, Y. Qi, X. Zhao et al., “A survey of safety and
trustworthiness of large language models through the lens of
verification and validation,” arXiv preprint arXiv:2305.11391, 2023.

[156] T. Liu, Y. Zhang, C. Brockett, Y. Mao, Z. Sui, W. Chen, and
B. Dolan, “A token-level reference-free hallucination detection
benchmark for free-form text generation,” in Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Dublin, Ireland: Association for
Computational Linguistics, May 2022, pp. 6723–6737. [Online].
Available: https://aclanthology.org/2022.acl-long.464

[157] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y.
Ng, and C. Potts, “Recursive deep models for semantic compo-
sitionality over a sentiment treebank,” in Proceedings of the 2013
conference on empirical methods in natural language processing, 2013,
pp. 1631–1642.

[158] K. Li, O. Patel, F. Viégas, H. Pfister, and M. Wattenberg,
“Inference-time intervention: Eliciting truthful answers from a
language model,” arXiv preprint arXiv:2306.03341, 2023.

[159] G. R. Terrell and D. W. Scott, “Variable kernel density estima-
tion,” The Annals of Statistics, pp. 1236–1265, 1992.

[160] H. B. Mann and D. R. Whitney, “On a test of whether one of
two random variables is stochastically larger than the other,” The
annals of mathematical statistics, pp. 50–60, 1947.

[161] I. Cohen, Y. Huang, J. Chen, J. Benesty, J. Benesty, J. Chen,
Y. Huang, and I. Cohen, “Pearson correlation coefficient,” Noise
reduction in speech processing, pp. 1–4, 2009.

21

https://ocw.mit.edu/courses/6-262-discrete-stochastic-processes-spring-2011/01d0892549619cb25d928f15ec7230ed_MIT6_262S11_chap05.pdf
https://ocw.mit.edu/courses/6-262-discrete-stochastic-processes-spring-2011/01d0892549619cb25d928f15ec7230ed_MIT6_262S11_chap05.pdf
https://ocw.mit.edu/courses/6-262-discrete-stochastic-processes-spring-2011/01d0892549619cb25d928f15ec7230ed_MIT6_262S11_chap05.pdf
https://lmsys.org/blog/2023-03-30-vicuna/
https://github.com/tatsu-lab/stanford_alpaca
https://aclanthology.org/2022.acl-long.464

[162] S. J. Semnani, V. Z. Yao, H. C. Zhang, and M. S. Lam, “Wikichat:
A few-shot llm-based chatbot grounded with wikipedia,” arXiv
preprint arXiv:2305.14292, 2023.

[163] S. Chorev, P. Tannor, D. Ben Israel, N. Bressler, I. Gabbay,
N. Hutnik, J. Liberman, M. Perlmutter, Y. Romanyshyn, and
L. Rokach, “Deepchecks: A Library for Testing and Validating
Machine Learning Models and Data,” Journal of Machine
Learning Research, vol. 23, pp. 1–6, 2022. [Online]. Available:
http://jmlr.org/papers/v23/22-0281.html

[164] C.-H. Cheng, G. Nührenberg, and H. Yasuoka, “Runtime moni-
toring neuron activation patterns,” in 2019 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 2019, pp.
300–303.

[165] T. A. Henzinger, A. Lukina, and C. Schilling, “Outside the box:
Abstraction-based monitoring of neural networks,” arXiv preprint
arXiv:1911.09032, 2019.

[166] Q. M. Rahman, P. Corke, and F. Dayoub, “Run-time monitoring
of machine learning for robotic perception: A survey of emerging
trends,” IEEE Access, vol. 9, pp. 20 067–20 075, 2021.

[167] M. Wardat, W. Le, and H. Rajan, “Deeplocalize: Fault localization
for deep neural networks,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 2021, pp. 251–
262.

[168] Y. Wu, Z. Li, J. M. Zhang, M. Papadakis, M. Harman, and Y. Liu,
“Large language models in fault localisation,” 2023.

[169] T.-W. Weng, H. Zhang, P.-Y. Chen, J. Yi, D. Su, Y. Gao, C.-J. Hsieh,
and L. Daniel, “Evaluating the robustness of neural networks: An
extreme value theory approach,” arXiv preprint arXiv:1801.10578,
2018.

[170] Y. Sun, X. Huang, D. Kroening, J. Sharp, M. Hill, and R. Ashmore,
“Testing deep neural networks,” arXiv preprint arXiv:1803.04792,
2018.

[171] D. Huang, Q. Bu, J. Zhang, X. Xie, J. Chen, and H. Cui, “Bias
assessment and mitigation in llm-based code generation,” 2023.

[172] X. Song, Y. Sun, M. A. Mustafa, and L. C. Cordeiro, “Airepair:
A repair platform for neural networks,” in 2023 IEEE/ACM
45th International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion). IEEE, 2023, pp. 98–101.

[173] J. Thorne, A. Vlachos, C. Christodoulopoulos, and A. Mittal,
“FEVER: a large-scale dataset for fact extraction and
VERification,” in Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers).
New Orleans, Louisiana: Association for Computational
Linguistics, Jun. 2018, pp. 809–819. [Online]. Available:
https://aclanthology.org/N18-1074

[174] O. Honovich, L. Choshen, R. Aharoni, E. Neeman, I. Szpektor,
and O. Abend, “q2: Evaluating factual consistency in knowledge-
grounded dialogues via question generation and question
answering,” in Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing. Online and Punta
Cana, Dominican Republic: Association for Computational
Linguistics, Nov. 2021, pp. 7856–7870. [Online]. Available:
https://aclanthology.org/2021.emnlp-main.619

[175] X. Wang, Q. Liu, T. Gui, Q. Zhang, Y. Zou, X. Zhou, J. Ye,
Y. Zhang, R. Zheng, Z. Pang, Q. Wu, Z. Li, C. Zhang, R. Ma,
Z. Fei, R. Cai, J. Zhao, X. Hu, Z. Yan, Y. Tan, Y. Hu,
Q. Bian, Z. Liu, S. Qin, B. Zhu, X. Xing, J. Fu, Y. Zhang,
M. Peng, X. Zheng, Y. Zhou, Z. Wei, X. Qiu, and X. Huang,
“TextFlint: Unified multilingual robustness evaluation toolkit
for natural language processing,” in Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language
Processing: System Demonstrations. Online: Association for
Computational Linguistics, Aug. 2021, pp. 347–355. [Online].
Available: https://aclanthology.org/2021.acl-demo.41

[176] S. Gehman, S. Gururangan, M. Sap, Y. Choi, and N. A. Smith,
“RealToxicityPrompts: Evaluating neural toxic degeneration
in language models,” in Findings of the Association for
Computational Linguistics: EMNLP 2020. Online: Association for
Computational Linguistics, Nov. 2020, pp. 3356–3369. [Online].
Available: https://aclanthology.org/2020.findings-emnlp.301

[177] R. Zhao, X. Li, Y. K. Chia, B. Ding, and L. Bing, “Can chatgpt-like
generative models guarantee factual accuracy? on the mistakes of
new generation search engines,” arXiv preprint arXiv:2304.11076,
2023.

[178] R. Khoury, A. R. Avila, J. Brunelle, and B. M. Camara,
“How secure is code generated by chatgpt?” arXiv preprint
arXiv:2304.09655, 2023.

[179] J. Liu, C. S. Xia, Y. Wang, and L. Zhang, “Is your code generated
by chatgpt really correct? rigorous evaluation of large language
models for code generation,” arXiv preprint arXiv:2305.01210,
2023.

[180] S. Frieder, L. Pinchetti, R.-R. Griffiths, T. Salvatori,
T. Lukasiewicz, P. C. Petersen, A. Chevalier, and J. Berner,
“Mathematical capabilities of chatgpt,” arXiv preprint
arXiv:2301.13867, 2023.

[181] H. Liu, R. Ning, Z. Teng, J. Liu, Q. Zhou, and Y. Zhang, “Eval-
uating the logical reasoning ability of chatgpt and gpt-4,” arXiv
preprint arXiv:2304.03439, 2023.

[182] P. Liang, R. Bommasani, T. Lee, D. Tsipras, D. Soylu, M. Yasunaga,
Y. Zhang, D. Narayanan, Y. Wu, A. Kumar et al., “Holistic
evaluation of language models,” arXiv preprint arXiv:2211.09110,
2022.

[183] K. Filippova, “Controlled hallucinations: Learning to generate
faithfully from noisy data,” arXiv preprint arXiv:2010.05873, 2020.

[184] C. Zhou, G. Neubig, J. Gu, M. Diab, F. Guzmán, L. Zettlemoyer,
and M. Ghazvininejad, “Detecting hallucinated content in
conditional neural sequence generation,” in Findings of the
Association for Computational Linguistics: ACL-IJCNLP 2021.
Online: Association for Computational Linguistics, Aug. 2021,
pp. 1393–1404. [Online]. Available: https://aclanthology.org/
2021.findings-acl.120

[185] T. Markov, C. Zhang, S. Agarwal, F. E. Nekoul, T. Lee, S. Adler,
A. Jiang, and L. Weng, “A holistic approach to undesired content
detection in the real world,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 37, no. 12, 2023, pp. 15 009–15 018.

[186] T. Zhang, H. Luo, Y.-S. Chuang, W. Fang, L. Gaitskell,
T. Hartvigsen, X. Wu, D. Fox, H. Meng, and J. Glass,
“Interpretable unified language checking,” arXiv preprint
arXiv:2304.03728, 2023.

[187] A. Malinin and M. Gales, “Uncertainty estimation in autoregres-
sive structured prediction,” arXiv preprint arXiv:2002.07650, 2020.

[188] Y. Xiao and W. Y. Wang, “On hallucination and predictive
uncertainty in conditional language generation,” in Proceedings
of the 16th Conference of the European Chapter of the Association for
Computational Linguistics: Main Volume. Online: Association for
Computational Linguistics, Apr. 2021, pp. 2734–2744. [Online].
Available: https://aclanthology.org/2021.eacl-main.236

[189] Y. Huang, J. Song, Z. Wang, H. Chen, and L. Ma, “Look before
you leap: An exploratory study of uncertainty measurement for
large language models,” arXiv preprint arXiv:2307.10236, 2023.

[190] L. Kuhn, Y. Gal, and S. Farquhar, “Semantic uncertainty:
Linguistic invariances for uncertainty estimation in natural
language generation,” in The Eleventh International Conference
on Learning Representations, 2023. [Online]. Available: https:
//openreview.net/forum?id=VD-AYtP0dve

[191] Z. Lin, S. Trivedi, and J. Sun, “Generating with confidence:
Uncertainty quantification for black-box large language models,”
arXiv preprint arXiv:2305.19187, 2023.

[192] J. Baan, N. Daheim, E. Ilia, D. Ulmer, H.-S. Li, R. Fernández,
B. Plank, R. Sennrich, C. Zerva, and W. Aziz, “Uncertainty in
natural language generation: From theory to applications,” arXiv
preprint arXiv:2307.15703, 2023.

[193] Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov, and E. P. Xing,
“Toward controlled generation of text,” in International conference
on machine learning. PMLR, 2017, pp. 1587–1596.

[194] N. Lee, W. Ping, P. Xu, M. Patwary, P. N. Fung, M. Shoeybi, and
B. Catanzaro, “Factuality enhanced language models for open-
ended text generation,” Advances in Neural Information Processing
Systems, vol. 35, pp. 34 586–34 599, 2022.

[195] F. Mireshghallah, K. Goyal, and T. Berg-Kirkpatrick, “Mix
and match: Learning-free controllable text generationusing
energy language models,” in Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). Dublin, Ireland: Association for Computational
Linguistics, May 2022, pp. 401–415. [Online]. Available:
https://aclanthology.org/2022.acl-long.31

[196] M. Cao, M. Fatemi, J. C. K. Cheung, and S. Shabanian, “Sys-
tematic rectification of language models via dead-end analysis,”
arXiv preprint arXiv:2302.14003, 2023.

[197] N. Tandon, A. Madaan, P. Clark, and Y. Yang, “Learning to
repair: Repairing model output errors after deployment using

22

http://jmlr.org/papers/v23/22-0281.html
https://aclanthology.org/N18-1074
https://aclanthology.org/2021.emnlp-main.619
https://aclanthology.org/2021.acl-demo.41
https://aclanthology.org/2020.findings-emnlp.301
https://aclanthology.org/2021.findings-acl.120
https://aclanthology.org/2021.findings-acl.120
https://aclanthology.org/2021.eacl-main.236
https://openreview.net/forum?id=VD-AYtP0dve
https://openreview.net/forum?id=VD-AYtP0dve
https://aclanthology.org/2022.acl-long.31

a dynamic memory of feedback,” in Findings of the Association
for Computational Linguistics: NAACL 2022. Seattle, United
States: Association for Computational Linguistics, Jul. 2022,
pp. 339–352. [Online]. Available: https://aclanthology.org/2022.
findings-naacl.26

[198] Z. Gou, Z. Shao, Y. Gong, Y. Shen, Y. Yang, N. Duan, and
W. Chen, “Critic: Large language models can self-correct with
tool-interactive critiquing,” arXiv preprint arXiv:2305.11738, 2023.

[199] J. Huang, S. S. Gu, L. Hou, Y. Wu, X. Wang, H. Yu, and
J. Han, “Large language models can self-improve,” arXiv preprint
arXiv:2210.11610, 2022.

[200] A. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao, S. Wiegr-
effe, U. Alon, N. Dziri, S. Prabhumoye, Y. Yang et al., “Self-
refine: Iterative refinement with self-feedback,” arXiv preprint
arXiv:2303.17651, 2023.

[201] X. Chen, M. Lin, N. Schärli, and D. Zhou, “Teaching large
language models to self-debug,” arXiv preprint arXiv:2304.05128,
2023.

[202] H. He, H. Zhang, and D. Roth, “Rethinking with re-
trieval: Faithful large language model inference,” arXiv preprint
arXiv:2301.00303, 2022.

[203] B. Peng, M. Galley, P. He, H. Cheng, Y. Xie, Y. Hu, Q. Huang,
L. Liden, Z. Yu, W. Chen et al., “Check your facts and try again:
Improving large language models with external knowledge and
automated feedback,” arXiv preprint arXiv:2302.12813, 2023.

[204] H. Qian, Y. Zhu, Z. Dou, H. Gu, X. Zhang, Z. Liu, R. Lai, Z. Cao,
J.-Y. Nie, and J.-R. Wen, “Webbrain: Learning to generate factually
correct articles for queries by grounding on large web corpus,”
arXiv preprint arXiv:2304.04358, 2023.

[205] W. Shi, S. Min, M. Yasunaga, M. Seo, R. James, M. Lewis, L. Zettle-
moyer, and W.-t. Yih, “Replug: Retrieval-augmented black-box
language models,” arXiv preprint arXiv:2301.12652, 2023.

[206] S. Zhang, L. Pan, J. Zhao, and W. Y. Wang, “Mitigating language
model hallucination with interactive question-knowledge align-
ment,” arXiv preprint arXiv:2305.13669, 2023.

[207] Y. Ma, C. Zhang, and S.-C. Zhu, “Brain in a vat: On missing pieces
towards artificial general intelligence in large language models,”
arXiv preprint arXiv:2307.03762, 2023.

[208] H. T. Siegelmann and E. D. Sontag, “On the computational power
of neural nets,” in Proceedings of the fifth annual workshop on
Computational learning theory, 1992, pp. 440–449.

[209] G. Weiss, Y. Goldberg, and E. Yahav, “On the practical
computational power of finite precision RNNs for language
recognition,” in Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short
Papers). Melbourne, Australia: Association for Computational
Linguistics, Jul. 2018, pp. 740–745. [Online]. Available: https:
//aclanthology.org/P18-2117

[210] W. Merrill, “Sequential neural networks as automata,” in
Proceedings of the Workshop on Deep Learning and Formal Languages:
Building Bridges. Florence: Association for Computational
Linguistics, Aug. 2019, pp. 1–13. [Online]. Available: https:
//aclanthology.org/W19-3901

[211] G. Weiss, Y. Goldberg, and E. Yahav, “Extracting automata from
recurrent neural networks using queries and counterexamples,”
in International Conference on Machine Learning. PMLR, 2018, pp.
5247–5256.

[212] ——, “Learning deterministic weighted automata with queries
and counterexamples,” Advances in Neural Information Processing
Systems, vol. 32, 2019.

[213] S. Ayache, R. Eyraud, and N. Goudian, “Explaining black boxes
on sequential data using weighted automata,” in International
Conference on Grammatical Inference. PMLR, 2019, pp. 81–103.

[214] Z. Wei, X. Zhang, Y. Zhang, and M. Sun, “Weighted automata ex-
traction and explanation of recurrent neural networks for natural
language tasks,” arXiv preprint arXiv:2306.14040, 2023.

[215] W. Merrill and N. Tsilivis, “Extracting finite automata from rnns
using state merging,” arXiv preprint arXiv:2201.12451, 2022.

[216] D. Hong, A. M. Segre, and T. Wang, “Adaax: Explaining recurrent
neural networks by learning automata with adaptive states,” in
Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2022, pp. 574–584.

[217] M. Ma, D. Du, Y. Liu, Y. Wang, and Y. Li, “Efficient adversarial
sequence generation for rnn with symbolic weighted finite au-
tomata.” in SafeAI@ AAAI, 2022.

[218] Z. Wang, Y. Huang, D. Song, L. Ma, and T. Zhang, “Deepseer:
Interactive rnn explanation and debugging via state abstraction,”

in Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems, 2023, pp. 1–20.

[219] H. Shi, S. Gao, Y. Tian, X. Chen, and J. Zhao, “Learning bounded
context-free-grammar via lstm and the transformer: Difference
and the explanations,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 36, no. 8, 2022, pp. 8267–8276.

[220] M. Geva, J. Bastings, K. Filippova, and A. Globerson, “Dissecting
recall of factual associations in auto-regressive language models,”
arXiv preprint arXiv:2304.14767, 2023.

[221] K. Wang, A. Variengien, A. Conmy, B. Shlegeris, and J. Steinhardt,
“Interpretability in the wild: a circuit for indirect object identifi-
cation in gpt-2 small,” arXiv preprint arXiv:2211.00593, 2022.

[222] U. Alon, F. Xu, J. He, S. Sengupta, D. Roth, and G. Neu-
big, “Neuro-symbolic language modeling with automaton-
augmented retrieval,” in International Conference on Machine
Learning. PMLR, 2022, pp. 468–485.

[223] M. Kuchnik, V. Smith, and G. Amvrosiadis, “Validating large
language models with relm,” Proceedings of Machine Learning and
Systems, vol. 5, 2023.

[224] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou,
S. Savarese, and C. Xiong, “Codegen: An open large language
model for code with multi-turn program synthesis,” 2023.

[225] A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundaresan, “Intel-
licode compose: Code generation using transformer,” in Proceed-
ings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineer-
ing, 2020, pp. 1433–1443.

[226] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond,
T. Eccles, J. Keeling, F. Gimeno, A. Dal Lago et al., “Competition-
level code generation with alphacode,” Science, vol. 378, no. 6624,
pp. 1092–1097, 2022.

[227] Y. Dong, X. Jiang, Z. Jin, and G. Li, “Self-collaboration code
generation via chatgpt,” arXiv preprint arXiv:2304.07590, 2023.

[228] T. Ahmed and P. Devanbu, “Few-shot training llms for
project-specific code-summarization,” in Proceedings of the
37th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’22. New York, NY, USA: Association
for Computing Machinery, 2023. [Online]. Available: https:
//doi.org/10.1145/3551349.3559555

[229] B. Wei, G. Li, X. Xia, Z. Fu, and Z. Jin, “Code generation as a
dual task of code summarization,” Advances in neural information
processing systems, vol. 32, 2019.

[230] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “Codet5: Identifier-
aware unified pre-trained encoder-decoder models for code un-
derstanding and generation,” arXiv preprint arXiv:2109.00859,
2021.

[231] J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Do-
han, E. Jiang, C. Cai, M. Terry, Q. Le et al., “Program synthesis
with large language models,” arXiv preprint arXiv:2108.07732,
2021.

[232] D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wallace, F. Shi,
R. Zhong, W.-t. Yih, L. Zettlemoyer, and M. Lewis, “Incoder: A
generative model for code infilling and synthesis,” arXiv preprint
arXiv:2204.05999, 2022.

[233] Z. Liu, C. Chen, J. Wang, X. Che, Y. Huang, J. Hu, and Q. Wang,
“Fill in the blank: Context-aware automated text input generation
for mobile gui testing,” in 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE). IEEE, 2023, pp. 1355–
1367.

[234] C. Lemieux, J. P. Inala, S. K. Lahiri, and S. Sen, “Codamosa:
Escaping coverage plateaus in test generation with pre-trained
large language models,” in International conference on software
engineering (ICSE), 2023.

[235] R. Meng, M. Mirchev, M. Böhme, and A. Roychoudhury, “Large
language model guided protocol fuzzing,” in Proceedings of the
Network and Distributed System Security Symposium (NDSS), 2024.

[236] Y. Deng, C. S. Xia, C. Yang, S. D. Zhang, S. Yang, and L. Zhang,
“Large language models are edge-case fuzzers: Testing deep
learning libraries via fuzzgpt,” arXiv preprint arXiv:2304.02014,
2023.

[237] D. Sobania, M. Briesch, C. Hanna, and J. Petke, “An analysis of
the automatic bug fixing performance of chatgpt,” arXiv preprint
arXiv:2301.08653, 2023.

[238] J. A. Prenner, H. Babii, and R. Robbes, “Can openai’s codex fix
bugs? an evaluation on quixbugs,” in Proceedings of the Third
International Workshop on Automated Program Repair, 2022, pp. 69–
75.

23

https://aclanthology.org/2022.findings-naacl.26
https://aclanthology.org/2022.findings-naacl.26
https://aclanthology.org/P18-2117
https://aclanthology.org/P18-2117
https://aclanthology.org/W19-3901
https://aclanthology.org/W19-3901
https://doi.org/10.1145/3551349.3559555
https://doi.org/10.1145/3551349.3559555

[239] N. Jiang, K. Liu, T. Lutellier, and L. Tan, “Impact of code language
models on automated program repair,” in Proceedings of the Inter-
national Conference on Software Engineering (ICSE). IEEE/ACM,
2023.

[240] C. S. Xia, Y. Wei, and L. Zhang, “Automated program repair in
the era of large pre-trained language models,” in Proceedings of the
45th International Conference on Software Engineering (ICSE 2023).
Association for Computing Machinery, 2023.

[241] Z. Fan, X. Gao, M. Mirchev, A. Roychoudhury, and S. H. Tan,
“Automated repair of programs from large language models,” in
2023 IEEE/ACM 45th International Conference on Software Engineer-
ing (ICSE). IEEE, 2023, pp. 1469–1481.

[242] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto,
J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray,
R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin,
B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser,
M. Bavarian, C. Winter, P. Tillet, F. P. Such, D. Cummings,
M. Plappert, F. Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss,
A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji,
S. Jain, W. Saunders, C. Hesse, A. N. Carr, J. Leike, J. Achiam,
V. Misra, E. Morikawa, A. Radford, M. Knight, M. Brundage,
M. Murati, K. Mayer, P. Welinder, B. McGrew, D. Amodei,
S. McCandlish, I. Sutskever, and W. Zaremba, “Evaluating large
language models trained on code,” 2021.

[243] Y. Liu, T. Le-Cong, R. Widyasari, C. Tantithamthavorn, L. Li, X.-
B. D. Le, and D. Lo, “Refining chatgpt-generated code: Charac-
terizing and mitigating code quality issues,” 2023.

[244] J. Wang, Y. Huang, C. Chen, Z. Liu, S. Wang, and Q. Wang,
“Software testing with large language model: Survey, landscape,
and vision,” arXiv preprint arXiv:2307.07221, 2023.

24

	Introduction
	Background
	Large Language Models
	LLM Trustworthiness Perspective
	Out-of-Distribution (OOD) Detection
	Adversarial Attacks
	Hallucination

	Model-based Analysis

	Methodology
	Overview
	Abstract Model Construction
	DTMC Construction
	HMM construction

	Semantics Binding
	Model Quality Metrics
	Applications

	Experiments
	Research Questions
	Experiment Settings
	General Setup
	Subject Trustworthiness Perspective

	RQ1: Can the abstract model differentiate the normal and abnormal behaviors of LLM?
	RQ2: How do different modelling techniques and corresponding configurations impact the quality of the abstract model?
	RQ2.1: How is the state abstraction correlated with abstract model-wise evaluation metrics?
	RQ2.2: How is the model construction method correlated with abstract model-wise evaluation metrics?

	RQ3: How does the framework perform across target trustworthiness perspectives, and how is its performance correlated with both semantics-wise and abstract model-wise metrics?
	RQ3.1: How does our framework perform on trustworthiness perspectives regarding semantics-wise metrics?
	RQ3.2: How is the performance of the framework correlated with the abstract model-wise metrics?

	Discussion
	Threats to Validity
	Related Work
	Quality Assurance of LLM
	Model-based Analysis for Stateful DNNs
	LLM and Software Engineering

	Conclusion
	References
	Appendix

