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ABSTRACT
As a representative cyber-physical system (CPS), robotic manipula-

tors have been widely adopted in various academic research and

industrial processes, indicating their potential to act as a universal

interface between the cyber and the physical worlds. Recent studies

in robotics manipulation have started employing artificial intelli-

gence (AI) approaches as controllers to achieve better adaptability

and performance. However, the inherent challenge of explaining

AI components introduces uncertainty and unreliability to these

AI-enabled robotics systems, necessitating a reliable development

platform for system design and performance assessment. As a foun-

dational step towards building reliable AI-enabled robotics systems,

in this paper, we propose a public benchmark for robotics manipu-

lation. It leverages NVIDIA Omniverse Isaac Sim as the simulation

platform, encompassing eight representative manipulation tasks

and multiple AI software controllers. An extensive empirical evalu-

ation is conducted to analyze the performance of AI controllers in

solving robotics manipulation tasks, enabling a relatively thorough

understanding of their effectiveness. To further demonstrate the

applicability of our benchmark, we also developed the first falsifica-

tion framework that is compatible with Isaac Sim. This framework

bridges the gap between traditional falsification methods and mod-

ern physics engine-based simulations. The effectiveness of different

optimization methods in falsifying AI-enabled robotics manipu-

lation with physical simulators is also examined. Our work not

only establishes a foundation for the design and development of AI-

enabled robotics systems but also provides practical experience and

guidance to practitioners in this field, promoting further research

in this critical academic and industrial domain. The benchmarks,

source code, and detailed evaluation results are available at https:

//sites.google.com/view/ai-cps-robotics-manipulation/home.

KEYWORDS
Cyber-physical System, Robotics Manipulation, Benchmarks, Deep

Reinforcement Learning, Falsification

†
Contributed equally to this research.

∗
Corresponding author, ma.lei@acm.org.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0501-4/24/04. . . $15.00

https://doi.org/10.1145/3639477.3639740

ACM Reference Format:
Zhehua Zhou

1†
, Jiayang Song

1†
, Xuan Xie

1†
, Zhan Shu

1
, Lei Ma

2,1∗
, Dikai

Liu
3
, Jianxiong Yin

3
, Simon See

3
. 2024. Towards Building AI-CPS with

NVIDIA Isaac Sim: An Industrial Benchmark and Case Study for Robot-

ics Manipulation. In 46th International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP ’24), April 14–20, 2024, Lisbon, Por-
tugal. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3639477.

3639740

1 INTRODUCTION
Over the past decades, cyber-physical systems (CPSs) have emerged

as an important area of research and development across various

industrial sectors [13, 32, 54, 63]. As a complex system that inte-

grates physical processeswith software elements, modern CPS often

comprises a diverse range of applications, e.g., autonomous vehi-

cles [35, 52], smart grids [39, 60], and medical devices [16]. Among

these applications, robotic manipulators hold great importance due

to their wide-ranging industrial applications, spanning domains

such as manufacturing [8], logistics [41], and agriculture [70]. Serv-

ing as a potential universal interface bridging the software and

the physical worlds, robotic manipulators enable in-depth cyber-

physical interactions. Recent studies in robotics manipulation have

exhibited an increasing trend to embrace artificial intelligence (AI)

techniques, particularly deep reinforcement learning (DRL) meth-

ods, as controllers to overcome the challenges and limitations asso-

ciated with traditional control software [34]. As a notable example

of AI-enabled CPS (AI-CPS) [48], these AI-enabled robotics manip-

ulation systems exhibit the potential to address a broad spectrum

of complex tasks and achieve higher levels of autonomy and uni-

versality.

However, the integration of AI techniques into robotics systems

also introduces uncertainty and unreliability due to the challenges

in interpreting the behavior of AI software controllers [38], neces-

sitating a powerful development platform for system design and

analysis. Considering factors such as safety, design/development

cost, and time efficiency, a reliable and accurate simulator is often

the central component of such a development platform [29, 30]. In

recent robotics research, software simulators based on physics en-

gines (referred to as physical simulators in this paper) have gained

high preference for simulating complex industrial systems due

to their enhanced accuracy, scalability, and flexibility [14, 62]. To

address this need, our industrial partner, NVIDIA, has recently in-

troduced NVIDIA Omniverse Isaac Sim [40, 44] (referred to as Isaac

Sim in this paper), an advanced physical simulator that offers seam-

less integration with NVIDIA hardware and software, providing

robust support for high-speed, GPU-accelerated simulation and AI

training. Moreover, Isaac Sim provides an extensive asset library

that simplifies and accelerates the development of diverse robotics

https://sites.google.com/view/ai-cps-robotics-manipulation/home
https://sites.google.com/view/ai-cps-robotics-manipulation/home
https://doi.org/10.1145/3639477.3639740
https://doi.org/10.1145/3639477.3639740
https://doi.org/10.1145/3639477.3639740
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Figure 1: Workflow summary of this paper.

control scenarios. It is capable of providing highly realistic simula-

tions that accurately model the system behaviors in the real world,

making it an ideal simulator for the development of AI-enabled

robotics applications.

Despite the promising capabilities of Isaac Sim, there remains

a need for a deep understanding of its performance in various

robotics tasks involving AI components. Furthermore, to the best of

our knowledge, there is a lack of research on how to effectively and

systematically utilize Isaac Sim as a development platform for AI-

enabled robotic manipulators. Therefore, in this paper, we take the

first step in investigating the perspectives of practitioners toward

establishing the foundations to support research and development

in AI-enabled robotics manipulation with Isaac Sim. Fig. 1 shows a

high-level workflow overview of this paper, the key stages of which

are summarized as follows.

To identify the most critical industrial demands, we first con-

ducted a survey involving academic and industrial practitioners

from the global robotics and AI communities. Through a series of

questions, we gathered valuable insights into the advantages and

drawbacks of Isaac Sim from various perspectives. In addition, we

tried our best to seek participants’ input on their requirements for

designing and developing AI-enabled robotics applications. This

survey not only reveals under which application scenarios Isaac Sim

may outperform other simulators but also uncovers the community

demands and future directions for developing a high-performing

physical simulator. Based on the survey results, we recognize the ur-

gent demand for a benchmark to unveil the characteristics of Isaac

Sim in the context of developing AI-enabled robotics manipulation.

Therefore, to bridge this gap, we initiate an early exploratory

study that establishes a public benchmark comprising eight repre-

sentative robotics manipulation tasks, along with multiple software

controllers trained with DRL algorithms. This benchmark could

potentially serve as a cornerstone for supporting the design and de-

velopment of AI-enabled robotics manipulation, promoting further

research in this critical academic and industrial domain. To further

evaluate the performance of AI controllers in manipulation tasks

simulated with Isaac Sim, we conduct an extensive and in-depth

evaluation to assess their capabilities across different tasks. Our

experimental results show that these controllers deliver satisfactory

performance in a wide range of tasks.

In addition, we further notice a lack of dedicated falsification
techniques specifically designed for physical simulators like Isaac

Sim, which could be of great importance for defect detection at

an early stage. In general, falsification plays a crucial role in the

CPS development lifecycle as it helps identify scenarios or condi-

tions in which the CPS fails or exhibits unsafe behaviors. However,

most existing falsification tools are MATLAB-based and cannot

interface directly with simulations driven by physics engines. The

compressed data within these simulations introduces additional

challenges in terms of accessibility and falsification analysis. More-

over, it remains uncertain whether traditional falsification methods

are still effective when applied to the scope of physical simulators.

To address this gap and demonstrate the practical applicability of

our benchmark, we developed the first Python-based falsification

framework that is compatible with Isaac Sim. Our findings indicate

that the effectiveness of traditional falsification techniques varies

across different tasks, calling for novel falsification techniques that

can combine the characteristics of the domain-specific task, as well

as the information from AI components.

The contributions of this work are summarized as follows.

• We conduct a survey among worldwide industrial and academic

practitioners to compare Isaac Sim with other state-of-the-art

physical simulators. The results offer valuable insights into the

strengths and limitations of Isaac Sim and reveal the community

demands and potential future developments.

• We establish a public benchmark of robotics manipulation with

AI software controllers. Leveraging the capabilities of Isaac Sim,

we integrate diverse manipulation tasks with unique challenges

into a unified benchmark. It lays the foundation for the develop-

ment of reliable and adaptable AI-enabled robotics manipulation

systems.

• We perform a large-scale analysis and study to evaluate and

explore the performance and characteristics of AI software con-

trollers in robotics manipulation. Such an analysis discloses the
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Figure 2: Abstract workflow of CPS.

benefits and challenges of AI controllers and provides insights

into developing robust and competent CPSs.

• We developed the first Python-based falsification framework that

is compatible with Isaac Sim. It bridges the gap between tradi-

tional falsification methods and modern simulation platforms.

We additionally investigate the performance and effectiveness of

existing optimization methods in falsifying AI-enabled robotics

manipulation tasks simulated using physics engines.

As an early step towards developing resilient, secure, and fault-

tolerant AI-enabled industrial-level robotics systems, our bench-

mark could potentially serve as a valuable resource for efficiently

utilizing Isaac Sim as the development platform for AI software con-

trollers in robotics manipulations, providing practical experience

and guidance for researchers and practitioners in this field. Fur-

thermore, the proposed benchmark is highly extensible and has the

potential to be extended to support the entire development lifecycle

of AI-CPSs, encompassing planning, design, testing, and deploy-

ment stages. The early exploration, benchmark, and study in this

emerging direction could potentially contribute to advancements

in AI-enabled robotics and other diverse CPSs, paving the way for

innovative software solutions in various real-world scenarios.

2 BACKGROUND
In this section, we first provide an overview of AI-CPS and AI-

enabled robotics manipulation. Then, a high-level introduction to

signal temporal logic (STL) and falsification technique is presented.

2.1 Robotics Manipulation as AI-CPS
As shown in Fig. 2, a CPS typically comprises four major compo-

nents: a physical plant𝑀 , a software control unit, an actuator, and

a network of sensors. Currently, AI technologies have been applied

across various components in CPSs, such as perception units and

decision-making units. In this work, we specifically focus on AI-

CPSs that use DRL algorithms as AI software controllers to achieve

real-time control of a physical plant𝑀 . The control command 𝑢 is

computed by the AI controller 𝐶 , which makes control decisions

based on the current state 𝑦 and an external input 𝑖 . After receiving

the control command𝑢, the plant evolves to the next state according

to the dynamics of the physical system.

As a typical example of CPS, the robotic manipulator integrates

physical components, e.g., the robot arm and the sensors, with

digital devices, e.g., the software controller, to perform tasks in the

real world. The dynamics of the manipulator is often described as

𝑀 (𝒒) ¤𝒒 +𝐶 (𝒒, ¤𝒒) +𝐺 (𝒒) = 𝝉 (1)

where 𝒒 = [𝑞1, 𝑞2, . . . , 𝑞𝑛]𝑇 and ¤𝒒 = [ ¤𝑞1, ¤𝑞2, . . . , ¤𝑞𝑛]𝑇 are the joint

angles and angular velocities, respectively. 𝑛 indicates the degrees

of freedom (DoF) of the robotic manipulator. 𝑀 (𝒒), 𝐶 (𝒒, ¤𝒒) and

𝐺 (𝒒) are the mass matrix, the vector of centrifugal and Coriolis

terms, and the gravity terms, respectively. 𝝉 represents the torques

applied on each joint of the manipulator.

By taking the current system states, e.g., 𝒒 and ¤𝒒, as well as
external sensor information, e.g., the status of the manipulation

objects, as the input, the control objective of robotics manipulation

is thus to design a controller𝐶 that generates a sequence of control

commands 𝑢 = 𝝉 to fulfill the desired task requirements. However,

traditional controllers usually rely on accurate modelling of the

system behavior, which in complicated tasks, e.g. manipulating

deformable objects, is hard to achieve. Moreover, designing a con-

troller based on a specific model limits its capability of performing

well in different environments and tasks, which further diminishes

its applicability and generalizability.

To address these challenges, recent studies in robotics manipula-

tion leverage AI techniques, e.g., DRL [4], to learn a control policy

directly from data, making it a typical and representative example

of AI-CPS. Therefore, by focusing on evaluating and falsifying these

AI-enabled robotics manipulation tasks, we are able to also obtain

a thorough understanding of how modern AI-CPS will perform in

actual critical industrial domains.

2.2 STL and Falsification
STL [18] is a specification language designed to describe the ex-

pected temporal-related behavior of a system, e.g., safety and per-

formance. It is equipped with quantitative robust semantics, which
quantitatively measures the degree of satisfaction of the specifica-

tion. Formally, given an STL specification 𝜑 and a system output

𝑀 (𝑖), where 𝑖 is the input signal, the STL semantics rob(𝑀 (𝑖), 𝜑)
maps 𝑀 (𝑖) and 𝜑 to a real number. A positive/negative value of

rob(𝑀 (𝑖), 𝜑) represents that the specification is satisfied/violated,

and a larger value implies a stronger satisfaction/violation. See [17]

for a detailed description of the robust semantics.

As a widely used safety assurance technique, falsification [15,

17, 74–76] aims to discover input signals to a system that could

violate a desired specification. It transforms the discovery process

into an optimization problem, with the goal of minimizing the

robust semantics such that rob(𝑀 (𝑖), 𝜑) is less than zero. Hill-

climbing based optimization methods [69], e.g., dual annealing [65]

and Nelder-Mead [25], are commonly used to solve this problem.

Typically, the optimization process involves first providing some

initial samples to the system and then proposing new samples

based on the feedback received, which is represented by the robust

semantics in this case.

3 RESEARCH QUESTIONS
In this paper, We mainly investigate the following three research

questions (RQs) to have a better understanding of the challenges and

opportunities of building reliable AI-enabled robotics manipulation

systems utilizing Isaac Sim.

RQ1: What are the advantages and limitations of Isaac Sim
compared to other physical simulators?

Although Isaac Sim is recognized for its seamless integration

with NVIDIA hardware, the requirements and challenges in sim-

ulating robotics manipulations are diverse and often dependent

on the tasks. In the field of robotics, there are numerous physical
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simulators, such as Gazebo [36] and PyBullet [20], that have been

widely used by researchers and practitioners to meet their specific

demands. As a novel simulation platform that is still in its develop-

mental stages, there is a need for an analysis of the strengths and

limitations of Isaac Sim compared to other physical simulators, as

well as its performance in simulating various robotics tasks.

Therefore, to study RQ1, we conducted a survey with industrial

and academic practitioners around the world to gather their com-

ments on the advantages and limitations of Isaac Sim as compared

to other physical simulators. The purpose of the survey is to gain

insights into the unique features and benefits of Isaac Sim that may

make it stand out from other simulators, as well as to identify any

potential drawbacks or areas where improvements could be made.

Details about the RQ1 are presented in Sec. 4.

RQ2: How do AI controllers perform in various robotics ma-
nipulation tasks?

The findings from RQ1 (see Sec. 4.2 for details) highlight the ne-

cessity of a benchmark that aids users in initiating and familiarizing

themselves with the utilization of Isaac Sim for the development

of AI-enabled robotics applications. To address this requirement,

we develop a benchmark comprising eight typical robotics ma-

nipulation tasks that cover rigid body manipulation, deformable

object manipulation, prehensile manipulation, and non-prehensile

manipulation, using Isaac Sim.

In the meantime, despite extensive research on DRL controllers

in robotics, there is still a lack of systematic and detailed analysis

of their performance in diverse robotics manipulation tasks. This

knowledge gap emphasizes the need to compare and evaluate differ-

ent DRL controllers under various task requirements. Therefore, we

design RQ2 that aims to compare different DRL controllers across

a wide range of manipulation tasks. For this purpose, we propose

various metrics to evaluate and examine the performance of dif-

ferent DRL controllers on the tasks presented in our benchmark.

The result reveals the strengths and limitations of different AI con-

trollers in robotics manipulation and allows researchers to identify

the most effective methods for achieving specific control objectives.

Details about this RQ are presented in Sec. 5.

RQ3: How effective are different optimization methods in
falsifying physics engine-based robotics manipulation tasks?

The findings of RQ1 also emphasize the need for falsification

support in the development of AI-enabled robotics applications

with Isaac Sim. Building upon this insight, we develop the first

Python-based falsification framework that can be directly used

with Isaac Sim. However, although falsification has proved to be

effective on traditional CPSs, its efficacy in robotics tasks simulated

using modern physical simulators remains unclear. To address this

gap, we introduce RQ3 to analyze the performance of different op-

timization methods, i.e., random, Nelder-Mead, and dual annealing,

in falsifying robotics tasks with AI software controllers. By using

our benchmark, we conduct a falsification experiment that reveals

the robustness and reliability of AI controllers and helps identify po-

tential failures and vulnerabilities in the system. Additionally, this

experiment also demonstrates the extensibility and applicability of

our benchmark. Details about RQ3 are given in Sec. 6.

Hardware & Software Dependencies. The simulation, DRL train-

ing and falsification were conducted using SKRL [53], RTAMT [43]

and Scipy [61] libraries. For the hardware platform, we use Lambda

Tensorbook equippedwith Intel
®
Core

™
i7-10870HCPU andNVIDIA

RTX 3080 Max-Q GPU.

4 ADVANTAGES AND LIMITATIONS OF ISAAC
SIM

As a first step towards understanding the demands of industrial

and academic practitioners, we conducted a survey to get opinions

about the advantages and limitations of Isaac Sim, as an answer

to RQ1: What are the advantages and limitations of Isaac
Sim compared to other physical simulators? In this section, we

describe the survey setting and present the results.

4.1 Design and Conduct of Survey
Survey Design. The survey consists of three question types: short-

answer, multiple-choice, and Likert scale questions. The Likert

scale questions ask respondents to indicate their level of agreement

with statements such as Strongly Agree, Agree, Neutral, Disagree,

Strongly Disagree, and I don’t know. The survey questions are

designed to understand robotics development with Issac Sim, which

consist of five parts:

• Demographics: We aim to gather information about the practi-

tioners’ demographics and experience in robotics development.

• General robotics design using Isaac Sim: We target to investigate

the pros and cons of Isaac Sim in terms of general robotics simu-

lation and development pipeline.

• Development challenges of DRL robotics tasks in Isaac Sim: In this

part, we ask about the practitioners’ experience in developing

DRL robotics tasks in Isaac Sim.

• Comparison with other robotics simulators: This part asks the
practitioners to compare Isaac Sim with other popular robotics

simulators, such as Gazebo and PyBullet.

• Testing of robotics tasks in Isaac Sim: This part studies the prac-
titioners’ habits in performing testing in robotics tasks and the

status of testing support in Isaac Sim.

We also provide an open-ended question at the end of the survey,

inviting practitioners to share their opinions and comments about

Isaac Sim in the context of robotics and DRL development.

Participant Recruitment.We recruited practitioners through two

methods: email contact and forum recruitment. To obtain email

contacts, we searched for research papers published in top confer-

ences such as ICSE, ESEC/FSE, ASE, ICRA, IROS, AAAI, IJCAI, and

NeurIPS from 2019 to 2023 that involve developing robotics tasks

in Isaac Sim. We collected the email addresses of the authors of

these papers, resulting in a list of 75 researchers whom we con-

tacted individually via email. For forum recruitment, we posted

topics about the survey in various online communities, including

the Isaac Sim forum [45], the NVIDIA official Discord community,

and the GitHub discussion page of relevant libraries, e.g., SKRL [53]

and Isaac Gym [40]. In total, we received 17 responses from nine

different countries. It should be noted that the participant recruit-

ment is reasonably biased towards robotics experts, as the aim of

the study is to understand their opinions. Due to the page limit,

details about the information of the respondents can be found on

our website.
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(a) Isaac Sim for developing general robotics simulation (c) Comparison to other platforms

(d) Testing robotics tasks in Isaac Sim(b) Isaac Sim for developing DRL modules

Figure 3: RQ1 - Partial questions and results from survey

4.2 Result Analysis and Findings
Fig. 3 presents the survey results from four important perspectives

(the complete version can be found on our website). As depicted in

Fig. 3(a), the majority of practitioners agree that Isaac Sim supports

diverse types of sensors (74%), and the USD (Universal Scene De-

sign) file format [57] makes it easier to develop custom scenes and

robots (80%). However, some respondents point out that certain

simulation features, such as simulating soft or deformable objects,

are not well developed.

Regarding challenges in developing DRL tasks in Isaac Sim,

Fig. 3(b) shows that most practitioners think that the API doc-

umentation lacks proper explanation (67%) and the community

support is not active enough (66%), which highlights the need for

improved documentation and official support for users of Isaac Sim.

Moreover, more than half (53%) of the practitioners consider that it

is not easy to develop and test new DRL algorithms.

In terms of comparison with other platforms (see Fig. 3(c)), all

practitioners believe that the training speed in Isaac Sim is faster

than other simulation platforms due to its good compatibility with

NVIDIA GPUs. Additionally, most of them find it easier to train

multiple DRL agents (63%) and create simulation scenes (50%) in

Isaac Sim due to its rich asset library. However, more than half of

the practitioners (57%) think that the community and documenta-

tion support is not as good as in other platforms. Moreover, as the

simulation prototype is ultimately expected to be deployed in the

real world, we are also interested in the accuracy of Isaac Sim’s

physical simulation. While half of the practitioners think that the

simulation is more accurate, the other half are neutral or disagree

with this point. In addition, we ask practitioners about their opin-

ions on testing robotics tasks in Isaac Sim (see Fig. 3(d)). Most of

them (93%) believe that it is a good idea to provide additional testing

support, with one practitioner stating, "An advanced plug-and-play

testing module will be an asset.". This encourages our development

of a falsification framework for Isaac Sim.

In conclusion, numerous participants have pointed out the lack

of a clear pipeline for DRL and robotics development in the current

version of Isaac Sim. Notably, many responses indicate that users

face challenges in initiating their development process due to insuf-

ficient instructions and documentation. Moreover, the absence of

a baseline for comparison and calibration poses difficulties for de-

velopers who lack guidance and standards to assess their progress

accurately. According to this, we propose an AI-enabled robotics

manipulation benchmark that is able to greatly benefit practitioners

in the following aspects: 1) an easy-to-use development playground

and pipeline; 2) a standard baseline for observation and compar-

ison; and 3) an extensible and applicable environment for quick

demonstration and prototyping.

Answer to RQ1: Isaac Sim has gained recognition for its fast

training speed and extensive asset library. However, practi-

tioners have expressed concerns regarding the lack of a clear

pipeline for DRL training and robotics development. A bench-

mark of AI-enabled robotics manipulation is desired. More-

over, there is a demand for testing support within Issac Sim.

5 BENCHMARK OF ROBOTICS
MANIPULATION

As revealed by Sec. 4.2, practitioners are seeking a versatile and

user-friendly environment that facilitates quick prototyping and

demonstration of AI-enabled robotics systems. Consequently, we

develop a public benchmark for AI-enabled robotics manipulation

with high extensibility and applicability as a timely solution to this

demand, as well as to RQ2: How do AI controllers perform in
various robotics manipulation tasks? In this section, we first

describe how the benchmark is construed based on Isaac Sim. Then,
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(a) Point Reaching (PR) (b) Cube Stacking (CS) (c) Peg-in-Hole (PH) (d) Ball Balancing (BB)

(e) Ball Catching (BC) (f) Ball Pushing (BP) (g) Door Opening (DO) (h) Cloth Placing (CP)

Figure 4: Robotics manipulation tasks included in the proposed benchmark based on Isaac Sim.

by using the developed benchmark, we systematically evaluate the

performance of AI software controllers. In particular, we introduce

four evaluation metrics and present the evaluation results.

5.1 Benchmark Construction
Our benchmark includes eight typical and diverse robotics manip-

ulation tasks (see Fig. 4). The task selection is based on dominant

topics and needs within the manipulation field [8]. Our aim is to

cover a diverse range of tasks with varying characteristics, such

as rigid body manipulation, soft/deformable object manipulation,

and non-prehensile manipulation [49]. Each task requires a unique

set of control strategies and presents a varying level of difficulty,

ranging from simple to complex, to examine the performance and

adaptivity of AI controllers.

The manipulator model used in all tasks is the Franka Emika

Panda [21], a state-of-the-art robotic arm widely used for various

manipulation tasks in research and industry [26, 47, 71]. A detailed

introduction to the presented benchmark is given as follows.

Tasks. The benchmark contains a total of eight tasks, each designed

to evaluate different aspects of a robot’s manipulation capabilities.

• Point Reaching (PR): The robot needs to reach a specific point in

3D Cartesian space by using its end-effector. This task is a fun-

damental and essential functionality that a manipulator should

possess.

• Cube Stacking (CS): In this task, the robot needs to grasp a cube-

shaped object and accurately place it on top of another cube-

shaped object that serves as the target. This pick-and-place like

task is a common task in industrial settings, e.g., assembly lines.

• Peg-in-Hole (PH): The robot needs to accurately insert a cylindri-

cal object into a corresponding hole. This task is commonly used

in manufacturing processes, such as circuit board assembly.

• Ball Balancing (BB): The objective of this task is to balance a ball

at the center of a tray that is held by the robot’s end-effector.

This task is useful for applications such as stabilizing a moving

platform.

• Ball Catching (BC): The robot needs to catch a ball that is thrown

to it using a tool. This task demands the capability to handle

moving objects.

• Ball Pushing (BP): The robot is required to push a ball towards a

target hole on a table. As a typical non-prehensile manipulation,

this task is important in many industrial applications, such as

material handling and conveyor systems.

• Door Opening (DO): The robot attempts to open a door using its

gripper. This is a more advanced manipulation task and requires

a multi-stage control process.

• Cloth Placing (CP): The robot has to move and place a piece of

cloth onto a target table. As a soft object manipulation task, it

often requires a more complex controller than rigid body object

manipulations.

AI software controllers. We employ various DRL algorithms,

such as Trust Region Policy Optimization (TRPO) [50], Deep Deter-
ministic Policy Gradient (DDPG) [37], Soft Actor-Critic (SAC) [27],
Proximal Policy Optimization (PPO) [51], and Twin-Delayed Deep
Deterministic (TD3) [24], as the AI software controller of the robotic
manipulator. These algorithms are based on the implementation

given in the SKRL library [53]. The AI controller takes the states

of the manipulator and the object to be manipulated as input and

generates the control command for each robot joint. For each task,

we design a specific reward function for training the AI controllers,

which is detailed on our website.

Learning Environments. To facilitate training and evaluation,

we wrap all tasks within the Omniverse Isaac Gym Reinforcement
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Table 1: Performance evaluation of AI controllers in robotics manipulation tasks (better results are highlighted in gray).

No noise With noise

Task Initial Configuration Controller TT SR DBR TCT SR DBR TCT

PR

Position of the target point (𝑥,𝑦, 𝑧-coordinates) PPO 10500 93% 0.26% 29.29 87% 0.27% 29.83

𝑥 ∈ [0.3, 0.7] 𝑦 ∈ [−0.4, 0.4], 𝑧 ∈ [0.4, 0.8] TRPO 26700 100% 0.07% 16.21 98% 0.12% 18.39

CS

Position of the target cube (𝑥,𝑦-coordinates) PPO 11300 100% 7.13% 75.66 98% 24.77% 75.74

𝑥 ∈ [0.4, 0.8], 𝑦 ∈ [−0.1, 0.3] TRPO 12600 99% 8.98% 66.44 98% 15.62% 66.80

PH

Position of the target hole (𝑥,𝑦-coordinates) PPO 154000 85% 3.59% 16.79 78% 4.41% 17.83

𝑥 ∈ [0.3, 0.7], 𝑦 ∈ [−0.2, 0.2] TRPO 259600 92% 1.90% 43.53 90% 2.41% 46.57

BB

Initial position of the ball (𝑥,𝑦-coordinates) PPO 11500 98% 0.47% 6.41 89% 3.44% 10.24

𝑥 ∈ [0.2, 0.5], 𝑦 ∈ [−0.15, 0.15] TRPO 12900 100% 0.01% 5.91 93% 2.23% 6.01

BC

Initial position of the ball (𝑥,𝑦-coordinates) PPO 20800 100% 6.34% 23.14 99% 6.96% 23.39

𝑥 ∈ [1.05, 1.15], 𝑦 ∈ [−0.05, 0.05] TRPO 28100 97% 8.69% 21.60 93% 9.14% 21.86

BP

Initial position of the ball (𝑥,𝑦-coordinates) PPO 60300 98% 9.28% 53.53 97% 13.78% 55.45

𝑥 ∈ [0.4, 0.6], 𝑦 ∈ [−0.1, 0.1] TRPO 175100 100% 6.85% 37.12 100% 7.88% 38.27

DO

Position of the door (𝑥,𝑦-coordinates) PPO 124400 89% 36.60% 136.62 81% 39.22% 154.63

𝑥 ∈ [0.75, 0.85], 𝑦 ∈ [−0.1, 0.1] TRPO 128300 97% 31.11% 126.36 94% 32.74% 127.06

CP

Position of the target table (𝑥,𝑦-coordinates) PPO 34700 100% 2.44% 12.15 99% 2.85% 14.87

𝑥 ∈ [0.45, 0.75], 𝑦 ∈ [−0.35, 0.35] TRPO 22400 99% 14.38% 27.45 99% 15.08% 29.25

Learning Environment [46], which is built on top of the OpenAI

Gym framework [10]. This provides better compatibility with Isaac

Sim simulations and other DRL libraries and allows for easy exten-

sions in the future.

Initial Configurations. By treating each manipulation task as an

independent entity, we consider the initial configuration of either

the object to be manipulated or the target object as the input signal

to the system. During the training process of the AI controller, we

vary the initial configuration to evaluate its performance. The allow-

able range of initial configurations for each task used in this paper

is specified in Table 1. All position values represent the relative

Cartesian distances to the base of the manipulator.

5.2 Evaluation Metrics
With the developed benchmark of robotics manipulation tasks, we

are able to answer RQ2. For this purpose, we perform the evalua-

tion based on four categories of evaluation metrics that consider

different aspects of the manipulation tasks:

• Success Rate (SR): This metric measures the percentage of success-

ful task completions among all attempted trials. Successful task

completion is defined as when the controlled system behavior

satisfies a predefined task-relevant STL specification (see Table 2

for the STL specifications used in our benchmark). These STL

specifications are grounded in existing literature and benchmark

problems [8, 12, 19]. A high SR indicates that the AI controller is

capable of effectively completing the task.

• Dangerous Behavior Rate (DBR): DBR is computed as the percent-

age of time steps, i.e., control intervals, where the manipulator is

close to failing the task, among all simulated time steps. A high

DBR indicates that the AI controller is prone to generating un-

safe or unstable control commands, which can potentially cause

task failures. The STL specifications used in our benchmark for

describing dangerous behaviors are given in Table 2.

• Task Completion Time (TCT): This metric measures the time steps

needed by the manipulator to successfully complete the task. A

shorter TCT indicates that the AI controller is capable of gener-

ating more efficient control commands to complete the task.

• Training Time (TT): We use TT to measure the training time

steps required to train the AI controller, i.e., the policy reward

converges to a constant level. A shorter training time indicates

that the used DRL algorithm is more efficient in learning the

control policy for the given task.

It is worth mentioning that, in real-world applications, system

noises and uncertainties, such as sensor noises or model inaccu-

racies, are often inevitable. Thus, the ability of manipulators to

remain robust under such conditions is crucial, especially for those

designed for real-world tasks. Therefore, we consider robustness as
our final critical evaluation metric. For this, we introduce action

noises to the trained AI controllers and measure how the SR, DBR,

and TCT are impacted. The influences of the noise indicate the

potential of AI controllers in bridging the simulation-to-reality gap

when implemented in real-world manipulators. Details about our

evaluation results are presented in the following subsection.

5.3 Experimental Evaluations
Experiment Settings. To evaluate the performance of AI-enabled

robotics manipulation, we first use various DRL algorithms, i.e.,

TRPO, PPO, SAC, TD3, and DDPG, to train multiple AI software

controllers for each manipulation task. However, our experiments

reveal that except for TRPO and PPO, the other DRL algorithms

fail to produce a working controller that is capable of solving the

manipulation task. One potential explanation for this could be that,

compared to off-policy algorithms, on-policy algorithms are better

suited for Isaac Sim, which employs parallel running of a large

number of environments [46]. In such a case, the collected sam-

ples are strongly correlated in time, and a considerable amount of

information is accumulated in each time step, posing challenges

for off-policy algorithms. Further research is needed to investigate

whether this is the root cause of the issue. Consequently, we use
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Table 2: STL specifications for different robotics manipulation tasks (□: Globally. ^: Eventually).

Task Successful Task Completion Dangerous Behavior
PR □[0,30] (∥fingerpos − pointpos∥ ≤ 0.3) □[0,30] (∥fingerpos − pointpos∥ ≤ 0.12)

CS

^[0,30] (∥cubepos − targetpos∥ ≤ 0.024∧
∥cubepos_z − targetpos_z∥ ≥ 0)

□[0,30] (∥cubepos − targetpos∥ ≤ 0.35∨
∥cubepos_z − targetpos_z∥ ≥ 0.02)

PH □[25,30] (∥objpos − holepos∥ ≤ 0.12) □[25,30] (∥objpos − holepos∥ ≤ 0.37)
BB □[5,20] (∥ballpos − traypos∥ ≤ 0.25) □[5,20] (∥ballpos − traypos∥ ≤ 0.2)
BC □[5,30] (∥ballpos − toolpos∥ ≤ 0.1) □[5,30] (∥ballpos − toolpos∥ ≤ 0.2)
BP ^[0,30] (∥ballpos − holepos∥ ≤ 0.3) ^[0,30] (∥ballpos − holepos∥ ≤ 0.5)
DO ^[0,30] (dooryaw ≥ 20) ^[0,30] (dooryaw ≥ 0.1)

CP ^[0,30] (∥clothpos − tablepos∥ ≤ 0.25)
□[0,30] (∥clothpos − tablepos∥ ≤ 0.3∨
∥clothpos_z − groundpos_z∥ ≥ 0.02)

only the AI controllers trained by PPO and TRPO in our perfor-

mance evaluation and the falsification experiment presented in the

next section, as they are the only functional ones.

For each task and AI controller, we conduct 100 trials separately

under two different conditions: without and with action noise,

where the action noise is a white Gaussian noise with a variance of

0.25. For each trial, the initial configuration is generated randomly

according to Table 1, and the simulation length is set to 300 time

steps. The values of DBR and TCT are averaged among all trails.

Experiment Results. The results are presented in Table 1. It can

be observed that both TRPO and PPO are able to accomplish most

of the manipulation tasks with an SR over 90%, except for PPO in

PH (85%) and DO (89%). While TRPO maintains a comparable SR

to PPO in tasks like CS, BC, and CP, it has a better performance in

other tasks, particularly for those that require precise control (e.g.,

PH) or a multi-stage control process (e.g., DO). As a result, TRPO

generally outperforms PPO in terms of SR. Similar trends can also

be observed in the metrics DBR and TCT, where TRPO usually has

a better performance with the exception that for the task CP, PPO

has a more clear advantage. However, TRPO often requires a longer

TT, especially for tasks PR, PH, and BP, where as much as twice of

the TT is required compared to PPO.

As expected, the introduction of action noise leads to a decrease

in the performance of AI controllers across all metrics. However,

both PPO and TRPO are still able to accomplish the tasks with a

satisfactory SR, where the decrease is less than 5% for most of the

tasks. Tasks that require accurate execution of actions, such as PH,

BB, and DO, exhibit a more noticeable decrease in SR. In terms of the

DBR, the action noise has a strong impact on the CS and BB tasks.

One potential reason could be that these tasks have less tolerable

space for manipulating objects, e.g., the size of the target cube in

CS or the tool in BB, making imprecise actions more dangerous.

The impact of the action noise on the DBR of other tasks as well as

on the TCT is marginal. Overall, both PPO and TRPO show good

performance in terms of robustness against action noise.
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Figure 5: Structure of the proposed falsification framework.

Answer to RQ2: The AI controllers trained using PPO and

TRPO exhibit satisfactory performance in robotics manipu-

lation tasks. In general, TRPO outperforms PPO in terms of

SR, while PPO requires less TT. Moreover, both controllers

demonstrate a good level of robustness against action noise.

6 FALSIFICATION FOR DEFECT DETECTION
IN ISAAC SIM

As discussed in Sec. 4.2, there is an urgent need to provide testing

support for Isaac Sim. However, to the best of our knowledge, a

dedicated testing tool specifically designed for physical simulators

is currently lacking. To bridge this gap, we focus on falsification, a

widely-used testing technique specified for CPS, and develop the

first Python-based falsification framework that can be seamlessly in-

tegrated with Isaac Sim. By leveraging this framework, we compare

the effectiveness of three commonly used optimization methods,

i.e., random, Nelder-Mead, and dual annealing, in falsifying subject

tasks, as an answer to RQ3: How effective are different opti-
mizationmethods in falsifying physics engine-based robotics
manipulation tasks?

6.1 Falsification Framework
Based on the proposed benchmark in Isaac Sim, we develop ac-

cordingly an extendable falsification framework to evaluate the

performance of AI controllers in physics engine-based simulations.

Fig. 5 shows the structure of the falsification framework. It consists

of three parts: the system model, the monitor, and the optimizer.
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Table 3: Performance of different optimization methods in the falsification experiment (best results are highlighted in gray).

Random Nelder-Mead Dual Annealing

Task Controller #Suc. Fals. Avg. Time (s) Avg. #Sim #Suc. Fals. Avg. Time (s) Avg. #Sim #Suc. Fals. Avg. Time (s) Avg. #Sim

PR

PPO 30 15.10 8.57 7 15.03 8.43 30 27.76 16.37

TRPO 0 - - 2 206.28 128.50 23 173.26 107.83

CS

PPO 1 482.68 201 2 411.56 172.00 10 436.81 182.20

TRPO 12 429.94 171.17 12 408.05 167.08 16 317.58 126.31

PH

PPO 26 222.09 117.19 17 249.76 132.59 30 117.35 93.97

TRPO 27 223.78 120.41 13 189.63 102.00 26 220.29 118.27

BB

PPO 3 199.22 101.33 7 187.56 96.14 9 98.85 50.22

TRPO 5 225.87 111.60 5 256.52 126.6 6 246.68 121.67

BC

PPO 5 510.06 195.00 4 400.12 153.00 6 390.68 146.50

TRPO 16 164.51 56.69 12 264.35 90.50 25 185.03 64.32

BP

PPO 26 222.09 117.19 17 249.76 132.59 30 117.35 93.97

TRPO 27 223.78 120.41 13 189.63 102.00 26 220.29 118.27

DO

PPO 30 25.31 11.13 30 21.78 9.50 30 17.09 7.50

TRPO 30 58.88 25.83 30 56.21 24.30 30 54.60 23.67

CP

PPO 16 121.53 100.00 2 158.08 127.00 28 62.40 50.43

TRPO 21 1211.48 107.52 14 1677.16 99.64 30 754.18 83.13

Model: The model is responsible for simulating the physical be-

havior in different robotics manipulation tasks. For each input

signal, i.e., the initial configuration, a trained AI software controller

attempts to control the manipulator to accomplish the task. This

results in a sequence of observations, i.e., the system trajectory, that

will be used in the monitor to verify the completeness of the task.

As aforementioned, in our benchmark, each task is wrapped as an

Omniverse Isaac Gym environment. To facilitate compatibility with

other physical simulators, we further wrap all task environments

into standard OpenAI Gym environments by using the wrapper

provided in the SKRL library [53]. This provides the developed falsi-

fication framework with the potential to be used not only with Isaac

Sim but also with other physical simulators that utilize OpenAI

Gym environments, e.g., Mujoco [59] or PyBullet [20].

Monitor: The monitor takes the system trajectory generated from

the simulation as input and computes the robustness of the AI

controller’s behavior against predefined STL specifications. We use

RTAMT [43], a Python library for monitoring STL specifications, to

compute the robustness values. The STL specifications employed

in our falsification experiments are identical to those used to define

successful task completions, as detailed in Table 2.

Optimizer: The optimizer searches for worst-case scenarios where

the AI controller fails to meet the STL specifications, i.e., the initial

configurations resulting in a system trajectory with minimal robust-

ness. Such a search process is considered an optimization problem

where the objective function is the combination of the model and

the monitor, which returns the corresponding robustness value for

a given input signal. We implement three optimization algorithms,

namely random, Nelder-Mead, and dual annealing, in the proposed

falsification framework. The latter two algorithms are based on the

Scipy library [61].

The proposed falsification framework provides a rigorous and

systematic approach for evaluating the reliability of various AI con-

trollers in robotics manipulation tasks. Based on it, we conducted

a falsification experiment using our benchmark. The results are

detailed in the next subsection.

6.2 Experimental Evaluations
To answer RQ3, i.e., how effective are different optimization meth-

ods in falsifying physics engine-based robotics manipulation tasks,

we falsify the trained AI controllers from Sec. 5.3 with the proposed

falsification framework. For each AI controller, following the typi-

cal setting in the falsification community [72, 74–76], we conduct

30 falsification trials, each consisting of a maximum of 300 task

simulations.

The number of successful falsifications, and the average time and

number of task simulations used for finding the first falsification in

each trail are presented in Table 3. The results of the falsification

experiment show that dual annealing outperforms other methods.

While achieving only one less successful falsification than the ran-

dom approach in the BP and PH tasks with the TRPO controller, it

has a noticeable advantage in other tasks. In contrast, Nelder-Mead

performs poorly in robotics manipulation tasks. A possible reason

for this could be that, due to the highly nonlinear function of the

robustness of STL specifications, a large number of local optima ex-

ist. In such cases, heuristic direct search methods like Nelder-Mead

are prone to get stuck in local optima and, therefore, may fail to

falsify these tasks.

It is also worth mentioning that achieving high rewards in the

training process does not necessarily indicate that the AI controller

will reliably accomplish its desired task. As mentioned in [78],

success in reward does not guarantee success in task completion.

Our experiment also shows that evenwell-trained AI controllers can

still be falsifiable by state-of-the-art falsification techniques. This

highlights the necessity of incorporating falsification techniques

into the testing framework of AI-enabled robotics manipulation.

Answer to RQ3: The effectiveness of different optimization

methods varies in falsifying physics engine-based robotics

manipulation tasks. Dual annealing shows satisfactory falsifi-

cation results, while Nelder-Mead has a relatively poor per-

formance. Considering the task-specific characteristics may

be crucial when developing a highly effective falsification

method for AI-enabled robotics applications.
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7 DISCUSSION AND FUTURE DIRECTION
Discussion. Based on the findings of our survey, we recognize

that a versatile environment, e.g., a benchmark, is crucial for the

development of AI-enabled robotics systems. Practitioners seek an

intuitive pipeline and plug-and-play solutions to streamline their

efforts and avoid getting entangled in inconsequential steps. In

response to this demand, we construct our benchmark with an

emphasis on ease of use, i.e., developers can easily deploy their

methods and techniques on our benchmark without the need for

extensive low-level adjustments. Such a benchmark could greatly

facilitate the development of AI-CPSs in industrial applications

with Isaac Sim, and also aid the creation of innovative AI solutions

to address industry challenges. Moreover, our evaluation provides

insights into the challenges and potential opportunities involved in

developing AI software controllers with Isaac Sim. Notably, existing

DRL algorithms may neglect the impact of the parallel running of

learning environments associated with Isaac Sim. Further research

is needed to design and develop AI methods that effectively account

for and exploit this characteristic.

We also notice that, while AI controllers demonstrate good per-

formance in manipulation tasks, their reliability often cannot be

guaranteed. Hence, before the actual real-world deployment, a thor-

ough falsification is crucial for AI-CPSs. To address this need, we

developed the first Python-based falsification framework that is

compatible with Isaac Sim. This could greatly improve the reliability

of falsification and pave the way for smoother future deployments

of AI-CPSs in real-world industrial scenarios. However, the perfor-

mance of different optimization techniques in falsification can be

influenced by the properties of the control task. Therefore, taking

into account the characteristics of the task is important for perform-

ing effective falsification, and different methods may be necessary

for different tasks.

Future direction. For applying AI controllers in real-world in-

dustrial applications, an analysis of the simulation-to-reality gap

is critical. Therefore, one of our future research directions is to

investigate the accuracy of Isaac Sim’s simulations in relation to

real-world results. Such an analysis could facilitate the deploy-

ment of AI-CPSs in real-world tasks. Another possible direction

is to expand our benchmark to encompass other AI-CPSs, such

as AI-enabled autonomous vehicles or UAVs. This would amplify

the adaptability of our benchmark, catering to a broader range

of diverse AI-CPSs. Moreover, we also aim to incorporate more

state-of-the-art optimization methods, such as those available in

Breach [17] or S-Taliro [2] libraries, into our falsification frame-

work. This would increase the versatility of our framework, making

it useful not only for robotics manipulation tasks but also for other

types of AI-CPSs.

8 THREATS TO VALIDITY
To address the construct validity concern, we recognize that the

evaluation metrics may not fully capture the performance of AI

controllers. Therefore, we adopt multiple evaluation metrics that

cover various perspectives of the task to measure and analyze

the performance of AI-enabled robotics manipulation. In terms

of internal validity, one potential threat is that the behavior of the
AI controller can differ when using different training parameters. To

mitigate this threat, we try different sets of parameters and choose

the one that results in the best performance in our evaluation.

Regarding the external validity, we acknowledge that our evaluation
results may not be generalized to other robotics manipulation tasks.

To address this concern, we include a diverse set of tasks with

unique challenges and requirements in our benchmark to consider

a wide range of manipulation scenarios.

9 RELATEDWORK
Due to the page limit, we focus on presenting the most pertinent

related work in this section. For a more detailed review, we kindly

direct readers to our website.

Benchmark of CPS and AI-CPS. CPSs are highly integrated

systems that collaborate diverse disciplines, e.g., mechanical, elec-

trical, and particularly software engineering, to tackle challenges in

real-world applications. Ernst et al. [22] provided a benchmark of

traditional CPSs and compared the performance of various testing

tools on these systems. However, this benchmark only focuses on

traditional CPSs instead of AI-CPSs. Song et al. [55] proposed a first

benchmark for AI-CPSs with nine tasks from different domains.

However, this benchmark is built on MATLAB, which relies on

accurate mathematical models to describe the system behaviors.

In addition, other existing literature [9, 19, 33] includes AI-CPSs,

but most of them are simplified systems or game scenarios such

as Cart-Pole and Inverted Pendulum that are not appropriate for

industrial-level applications.

Benchmark of robotics. In the field of robotics, multiple bench-

marks have been proposed for general robotics applications, e.g., [1,

11, 23]. However, these benchmarks often have limitations, as they

either focus on providing different robot, object, or sensor mod-

els [42, 77] or are designed only for specific topics of robotics con-

trol, such as manipulating deformable objects [12] or real-time

robotics [5]. Moreover, these benchmarks often ignore important

components of the software development lifecycle, e.g. testing. Con-

sidering these limitations, a unified benchmark that covers a broad

range of tasks and effectively supports the software development

lifecycle is desirable. By proposing a benchmark based on Isaac Sim,

we aim to address this need and take a first step towards building a

development platform for AI-enabled robotics applications.

AI-CPS testing and falsification. Testing is a non-trivial topic in

CPSs as it provides the quality assurance to deploy reliable and ro-

bust CPSs in safety-critical applications. There is an increasing trend

of research devoted in this direction [3, 6, 7, 28, 31, 64, 66–68, 73].

For instance, Zolfagharian et al. [78] proposed a search-based test-

ing approach that leverages a genetic algorithm to generate testing

cases for DRL agents, and Stocco et al. [56] delved deeper into the

simulation-to-reality gap in the context of autonomous driving

vehicles. Falsification [15, 55, 74] is one of the widely used testing

techniques to examine the safety of AI-CPS. Zhang et al. [76] lever-

aged the temporal behaviors of DNN controllers and introduced a

falsification framework for AI-CPSs. In [58], a Python-based falsifi-

cation toolbox for CPSs is presented. However, like other MATLAB

falsification tools, it still requires an accurate system model defined

as, e.g., ordinary differential equations. Moreover, it is still unclear

the effectiveness of existing falsification approaches on modern
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physical simulators. Our work develops the first Python-based ex-

tendable falsification frameworkwith various optimizationmethods

for Isaac Sim. We believe that our framework can greatly enhance

the flexibility of conducting testing for AI-CPS practitioners and

motivate further research in this direction.

10 CONCLUSION
By using Isaac Sim, this paper presents a public benchmark of AI-

enabled robotics manipulation that includes eight representative

manipulation tasks. Multiple AI software controllers are trained

with various DRL algorithms, and an evaluation of their perfor-

mance is conducted. The results show that AI controllers are able to

successfully complete the tasks with satisfactory performance and a

good level of robustness against action noise. To further test the AI

controllers, we also developed the first Python-based falsification

framework that is compatible with Isaac Sim. Three different opti-

mization methods are employed to falsify AI controllers in robotics

manipulation tasks. The results of the falsification reveal the effec-

tiveness of state-of-the-art falsification techniques in identifying

system defects, making them useful for analyzing the reliability

of AI controllers. Our work establishes a foundation as well as a

systematic pipeline for evaluating and testing AI-enabled robotics

systems with modern physical simulators, which is an important

step towards understanding and developing trustworthy AI-CPSs

for critical real-world domains.
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