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SIEGE: A Semantics-Guided Safety
Enhancement Framework for Al-enabled
Cyber-Physical Systems

Jiayang Song, Xuan Xie, and Lei Ma

Abstract—Cyber-Physical Systems (CPSs) have been widely adopted in various industry domains to support many important tasks
that impact our daily lives, such as automotive vehicles, robotics manufacturing, and energy systems. As Atrtificial Intelligence (Al) has
demonstrated its promising abilities in diverse tasks like decision-making, prediction, and optimization, a growing number of CPSs
adopt Al components in the loop to further extend their efficiency and performance. However, these modern Al-enabled CPSs have to
tackle pivotal problems that the Al-enabled control systems might need to compensate the balance across multiple operation
requirements and avoid possible defections in advance to safeguard human lives and properties. Modular redundancy and ensemble
method are two widely adopted solutions in the traditional CPSs and Al communities to enhance the functionality and flexibility of a
system. Nevertheless, there is a lack of deep understanding of the effectiveness of such ensemble design on Al-CPSs across diverse
industrial applications. Considering the complexity of Al-CPSs, existing ensemble methods fall short of handling such huge state space

and sophisticated system dynamics. Furthermore, an ideal control solution should consider the multiple system specifications in
real-time and avoid erroneous behaviors beforehand. Such that, a new specification-oriented ensemble control system is of urgent

need for AI-CPSs.

In this paper, we propose SIEGE, a semantics-guided ensemble control framework to initiate an early exploratory study of ensemble
methods on Al-CPSs and aim to construct an efficient, robust, and reliable control solution for multi-tasks Al-CPSs. We first utilize a
semantic-based abstraction to decompose the large state space, capture the ongoing system status and predict future conditions in
terms of the satisfaction of specifications. We propose a series of new semantics-aware ensemble strategies and an end-to-end Deep
Reinforcement Learning (DRL) hierarchical ensemble method to improve the flexibility and reliability of the control systems. Our
large-scale, comprehensive evaluations over five subject CPSs show that 1) the semantics abstraction can efficiently narrow the large
state space and predict the semantics of incoming states, 2) our semantics-guided methods outperform state-of-the-art individual
controllers and traditional ensemble methods, and 3) the DRL hierarchical ensemble approach shows promising capabilities to deliver
a more robust, efficient, and safety-assured control system. To enable further research along this direction to build better Al-enabled
CPS, we made all of the code and experimental results data publicly available at https://sites.google.com/view/ai-cps-siege/home.

Index Terms—Cyber-Physical Systems, Reinforcement Learning, State Abstraction, Al Controllers, Ensemble Methods.

1 INTRODUCTION

Cyber-Physical Systems (CPSs) are often complex systems
where physical plants collaborate with computer units to
perform complex tasks [1]. Due to its cyber-physical inte-
gration characteristics, CPS shows a promising capability to
enhance and assure the efficiency and reliability of large-
scale industrial systems. Considering the advanced inter-
dependencies and collaborative ability between the digi-
tal and physical units, CPSs are anticipated to be able to
solve complicated and challenging control tasks in vari-
ous domains, such as autonomous driving, power grids,
and medical devices. In terms of the control systems in
CPSs, the commonly used traditional controllers are Model
Predictive Control (MPC), Proportional-Integral-Derivative
(PID) Control, Linear Quadratic Regulator (LQR), etc. We
would like to use one of our collected CPSs, Adaptive Cruise
Control System (ACC), as a running example to illustrate the
characteristics of controllers in CPSs. A model predictive
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controller is used in ACC, which takes the relative distance
between the ego car and the lead car, the user-set cruising
velocity, the ego car velocity and the relative velocity to
the lead car as inputs and outputs an acceleration control
signal to the ego car. MPC generates a control command
at each time-step by predicting the movements of the two
vehicles in a finite time-horizon. MPC aims to track the use-
set cruising velocity while maintaining a safe distance from
the lead car.

Artificial Intelligence (Al), a rising trend of industrial
adoption in the past decade, shows promising abilities in be-
havior imitation, decision making and optimization. Among
all kinds of AI methods, Deep Reinforcement Learning
(DRL) is considered the specialized approach to offer op-
timized control strategies for non-linear, stochastic systems
with high uncertainty [2], [3], [4], [5], [6]. Both industry and
academia are motivated to utilize Al as complements or
substitutions to empower traditional applications [7], [8].
Likewise, a growing number of CPSs have also adapted
Al controllers inside the loops to improve operation safety,
efficiency, and security [7], [9]. We refer to this type of Al-
embedded CPSs as Al-enabled CPS (AI-CPS) [10], [11], [12].

For industrial-scale CPSs, multiple requirements are com-
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monly needed to be considered during the design and de-
velopment of the system. However, considering the complex
dynamics nature of CPS in general, as shown by Song et
al. [13], a single Al controller can fall short and be limited
in handling all feasible complex situations due to the trade-
off between optimality and generality. As CPSs are widely
deployed as safety-critical applications, researchers and in-
dustry practitioners often try their best to exert all possible
solutions to assure the safety and robustness of the systems
against uncertainties and potential defections.

According to  the  international  standards,
e.g.,15026262 [14] and ISO/PAS 21448 (SOTIF) [15],
modular redundancy [16] has been confirmed as a useful
technique to tackle such safety problem. Specifically,
modular redundancy refers to a type of system design with
duplicated components that operate parallel to increase the
overall reliability and overcome possible failures [17], [18],
[19]. In terms of control systems, duplicated controllers
can operate alternately or parallelly under a single task to
prevent potential defections and hold the safety property at
all costs.

In the AI community, a similar duplicated-model de-
sign, ensemble learning [20], [21], [22], [23], has also been
commonly applied in many tasks such as classification, re-
gression, and transcription [24], [25], [26]. Ensemble learning
combines multiple learning algorithms via certain strategies
to achieve better performance than could be obtained by any
of the constituent sub-algorithms. Each weak learner inside
the ensemble pool does not need to be superior compared
to other single-learner algorithms, as the ensemble system
can generate a collective output to compensate for the in-
sufficiency of weak learners. Specifically, ensemble learning
is commonly used for classification, pattern recognition and
detection for ML tasks which have limited discrete output
space [20]. However, in terms of CPSs, the control signals
are generally represented by large continuous action space,
which brings significant challenges to existing ensemble
methods. Moreover, CPSs often come with critical safety
requirements such that a desired ensemble method should
have a safety-aware mechanism to prevent any potential
safety violations. The majority of existing tree-based en-
semble methods rely on heuristics, and inferring an optimal
decision tree is known to be NP-complete for many optimal-
ities [27]; these methods do not work well on large complex
systems such as CPSs.

As a cross-point between Al and CPS, we believe it
could be promising to leverage the domain knowledge from
both communities to construct more reliable, flexible and
safety-assured AI-CPSs. Inspired by both the modular re-
dundancy design and ensemble learning, instead of relying
on a single or individual Al controller, combining a ground
of Al controllers with different behavioural strategies is
a promising way to obtain better functional capabilities.
However, currently, there is still a lack of understanding
of adapting the ensemble methods in the context of CPS
domains. Ensemble methods are often designed for typical
ML tasks that are not easily transferable to controller design.
In addition, to develop a CPS-oriented ensemble strategy,
some abstraction techniques are needed to: 1) decompose
the large state space of the CPS, 2) describe the status of the
system and the behavior of the controller, and 3) provide

guidance to the ensemble workflow.

Therefore, to bridge this gap, in this early exploratory
work, we propose SIEGE: a semantics-guided ensemble con-
trol framework to systematically explore and understand
the capabilities of ensemble methods in the context of Al-
CPs.

We first train sub-controllers with diverse behavior as
the cornerstone of the ensemble system. To reduce the
prohibitively large state space of the CPS, we then leverage
the semantics-based abstraction, which provides a human-
interpretable way to describe the system status. Semantics
is a representation of the degree of satisfaction of the system
w.r.t. specifications. Furthermore, we incorporate as many
as six ensemble strategies, which aim to provide control
logic of the system: majority voting, average, Top-1 and Top-
k semantics prediction, coordinator, and coordinator (with
prediction). The strategies are based on the constructed
semantics-based abstract model, which provides semantics
information.

To demonstrate the usefulness of our framework, we
collect five industry-level CPS environments from different
domains. For each of them, we train 9 DRL-based individ-
ual Al controllers with different algorithms, structures of
reward functions and agent configurations. Finally, a large-
scale evaluation is performed to reveal the effectiveness and
characteristics of the ensemble framework on a total of 5 rep-
resentative AI-CPS tasks, 26 system specifications, 45 DRL
agents, 6 ensemble methods, and over 62,500 experimental
runs.

The evaluation results and our in-depth analysis demon-
strate that: 1) the semantics-based abstraction can effectively
describe the system status in a succinct and precise manner
2) the traditional ensemble methods can not much outper-
form the individual DRL controllers; 3) the new proposed
semantics-guided ensemble strategies can bring better per-
formance than the classical ensemble methods, showing that
the Al-ensemble system is a promising diction to extend the
flexibility and reliability of AI-CPSs.

The main contributions (also depicted in Figure 1) of our
paper are summarized as follows:

e A novel semantics-based abstraction, specially designed
for CPSs by taking the specifications into account, which
gives a human-interpretable way to describe system be-
havior, and provides predictive guidance for ensemble
strategies;

e A general-purpose ensemble framework, STEGE enclosed
4 new ensemble methods with the utilization of semantics
predictions;

o A large-scale evaluation is performed to reveal character-
istics of the ensemble framework on a total of 5 represen-
tative domains, 26 system specifications, 45 DRL agents, 6
ensemble methods, and over 62,500 experiment runs. The
results confirm that SIEGE outperforms individual state-
of-the-art DRL controllers and classical ensemble meth-
ods. Our proposed semantics-guided ensemble frame-
work is indeed promising to construct more optimized,
robust and reliable control systems for AI-CPSs.

o We initiate an exploratory study to investigate the perfor-
mance of ensemble methods on AI-CPSs. Our work aims
to bring more inspiration to researchers and motivate
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Fig. 1: Workflow summary of SIEGE: A semantics-guided ensemble framework

further improvements in terms of safe and reliable Al-
CPSs.

The Contributions to the Software Engineering Field.
CPSs are highly integrated systems which include several
disciplines such as mechanical, control, electrical and par-
ticularly software engineering (SE) [28], [29]. The role of
SE plays in CPSs is critical, which coordinates different
disciplines throughout the development and deployment so
that numerous system components can operate concertedly
to provide designed functionalities. In particular, how to
improve reliability and provide quality assurance for CPSs
is one of the important topics in software engineering [30],
[31], [32], [33]. Our work, following the line of the research,
aims to enhance the overall safety and reliability of CPSs
from various industry domains by leveraging semantics ab-
straction, modular redundancy design and ensemble learn-
ing.

The remainder of the paper is structured as follows.
Section 2 introduces the corresponding background. Section
3 describes the proposed abstraction and ensemble methods,
and Section 4 presents the experiment setup and evaluation
results. Section 5 discusses the potential impact of our
outcome. Section 6 analyzes the threats that may affect the
validity of our work. Section 7 reviews related work, and
Section 8 concludes the paper.

2 BACKGROUND

In this section, we first give the essential background knowl-
edge on Al-enabled Cyber-Physical Systems and Deep Rein-
forcement Learning controllers. We then introduce the state
abstraction technique and the ensemble control method. In
addition, we provide a brief description on Signal Temporal
Logic (STL) [34], a formal language for CPS to describe the
expected system behaviour.

2.1 Al-Enabled Cyber-Physical Systems(Al-CPS)

The Al-enabled Cyber-Physical System is illustrated in Fig-
ure 2, which mainly contains four components: the Al-based
controller, the actuator, the plant, and the sensor. The Al-
based controller (e.g. Deep Neural Network (DNN), Deep

Al-Controller

Input Signal i(t) (
-7 (DNN, DRL, etc.)

Control Signal u(t)

70) u(t) = C(0),i(1)
l Sensor l l Actuator l
Plant
(Physical Environment)
System State y(t) y(t) = M(y(t), u(t) u(t)

Fig. 2: A cyber-physical system with an AI controller

Reinforcement Learning(DRL)), C, plays a predominant role
in the AI-CPS. It takes the system state y(¢), from the
sensor and the input signal i(¢) and outputs a control signal
u(t) to control the actuator. In this work, we focus on
DRL controllers. The actuator regulates the behavior of the
plant toward desired performance by following the control
commands u(t) generated by the AI controller. The plant is
a physical environment where the next system state ¢(t) is
determined by the non-linear continuous dynamics M, the
current system state s(¢) and the actuator output u(t). The
sensor works as a sampler, which sample the continuous
system state y and outputs a discrete state y(t) at time step
t.

2.2 Deep Reinforcement Learning (DRL)

The behavior of a DRL agent can be described as a Markov
Decision Process (MDP) M = (S, A, R, P,v), where S is the
state space which contains the environment information , A
is the action space, P : S x A — [0,1] is the transition
function that maps the state-action pair (s,a) to a prob-
ability distribution over a successor state s’, R(s,a) is a
reward function that initiates a reward value to the current
state-action pair, and v € (0,1) is a discount factor [35].
A discount factor v determines the importance of between
the immediate reward and the future rewards. A large
will let the agent learn from a long-term reward and vice
versa. An MDP defines the environment that an RL agent
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will learn and react, and an optimal policy leads the agent
to achieve maximum cumulative rewards. The policy of an
MDP 7 : S — A maps a state to an action that leads to an
optimized reward.

Along with the fast advancement and evolution in the
RL community, plenty of online, model-free learning al-
gorithms have been proposed to compensate for various
demands. There are many well-known, state-of-the-art algo-
rithms such as, Deep deterministic policy gradient (DDPG) [36],
Twin-delayed deep deterministic policy gradient (TD3) [37],
Actor-critic (A2C) [38], Proximal policy optimization (PPO) [39],
Soft actor-critic (SAC) [40], etc. We refer interested readers
to [41] for more details.

DRL agents are promising substitutes for conventional
control systems, especially in large-scale plants with com-
plicated dynamics [42], [43]. As a combination of reinforce-
ment Learning and Deep Learning, DRL trains an agent
in an environment to make sequential decisions towards
the final objective [44], [45]. DRL explores the environment
and searches for the optimal policy by the trial-and-error
paradigm; namely, at each timestep, an action is selected
from a set of possible actions to maximize the cumulative
reward. In AI-CPS, the DRL agent behaves as a controller
that receives environment information from sensors and
generates commands to the actuator to control the plant.

2.3 State Abstraction

When analyzing AI-CPS, the dynamics of the system are
highly non-linear, and the state space and action space are
typically continuous with high dimensionality, which makes
the analysis computationally intractable. Consequently, the
abstraction technique, which reduces the system complex-
ity, is necessary to shrink the state space and provide an
approachable surrogate model for the system behavior.

The state abstraction ¢(s) : S — S is a mapping from
the original concrete state space S to a more compact abstract
space S, which preserves the intrinsic properties of the MDP
but narrows down the size of the state space [46], [47],
[48]. In general, there are three different types of abstraction
methods for RL [49], [50]:

(i) Policy-irrelevant abstraction: concrete state s; and s
are considered in the same abstract state ¢(s1) = ¢(s2),
if they have the identical strategy on action selection
m*(s1) = m*(s2) following an optimal policy 7*.

(ii) @ value-irrelevant abstraction: ¢(s1) = ¢(s2), if
Q*(s1,a) = Q*(s2,a),Va € A, where Q*(s,a) is an
optimal state-action value functions that can lead the
system to achieve the maximum cumulative reward.

(iii) Model-irrelevant abstraction: Not only focusing on a
single reference value, but model-irrelevant abstraction
also takes both the reward value and the transition dy-
namics into account. Namely, ¢(s1) = ¢(s2),Va € A if
R(s1,a) = R(s2,a) and P(6(S)|s1,a) = P(6(S)]s2, a),
where P(¢(S5)|s,a) is transition distribution of state s
over abstract state space ¢(95).

These aforementioned abstraction approaches work well
in the case of low-dimensional and discrete state space.
Nevertheless, when encountering high dimensional contin-
uous space, like in the context of AI-CPS, these methods
are not applicable. The policy-irrelevant and @-irrelevant
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abstraction cannot preserve the reward structure and tran-
sition dynamics. For model-irrelevant abstraction, it is hard
to get deployed in the context of CPS due to the “curse
of dimensionality” [51]. Notice that a poor abstraction can
cause a huge approximation error, which means the abstract
state space loses its generality and accuracy in representing
the original state space. Therefore, to reduce the space of
analysis while keeping capturing the characteristics of the
AI-CPS, we propose semantics-based abstraction, which will
be described in Section 3.2.1.

2.4 Ensemble Learning Methods

Ensemble methods have demonstrated their promising ca-
pabilities on various tasks, and the feature of modular re-
dundancy design in CPSs naturally provides a playground
for ensemble approaches. Therefore, we adopt the combina-
tion of two techniques onto AI-CPSs, which target building
safety and reliability-enhanced control systems.

As a single machine learning model may fall short of
handling complex data environments, ensemble learning
methods aim to combine multiple models (sub-learners) to
deliver a synergistic performance better than that achievable
from any constituent model alone [21]. Typically, an ensem-
ble model mainly consists of two parts: a group of sub-
learners', which takes the same input, and a strategy, which
decide how to aggregate the output of each sub-learner. The
core of the strategy in ensemble methods is to compensate
for the errors from a single sub-learner by fusing the output
of other sub-learners such that the overall performance is
improved.

A good ensemble model should follow several prin-
ciples [52]. First, sub-learners should keep their indepen-
dence, i.e., a decision from one learner cannot affect others.
Moreover, the sub-learners should have diverse decision
characteristics to explore the decision space as much as
possible and compensate for the errors from others. For
the strategy, it should fuse the output from each learner
into a collective decision following a reasonable aggregation
method [20].

In practice, ensembles have been considered as the state-
of-the-art solution for many ML tasks, and a series of
ensemble methods have been proposed, such as Majority-
Voting [53], Averaging [54], AdaBoost [55], Random Forest [56].
In this paper, we choose Majority-Vote and Averaging as
the baseline for the comparison. In this work, we use en-
semble learning and ensemble methods interchangeably to
represent the overall ensemble pipeline. To avoid misunder-
standing, we use ensemble strategies to specifically indicate
the aggregation methods.

2.5 Formal Specification

Formal specification is used to describe the desired properties
a system should hold, such as safety and efficiency. In the
context of CPS, Signal Temporal Logic (STL) [38] is a popular
specification language that can express general temporal
properties which characterize the desired CPS behavior over
time.

1. We use “sub-learner/sub-controller” interchangeably.
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For STL syntax, atomic propositions a and formulas ¢ are
defined as follows, respectively:

a == f(v) >0
pu=alll-pleoAeloVeloUre|Orp|Orp

Here, f is a function that maps a vector v to a real
value, and I is a time interval [a,b], where a,b € R and
a < b. We omit subscripts I for temporal operators if
I = [0, 00). In this definition, «, L are atomic formulas. The
function f can be any function that takes as input a number
of values of variables and maps them to a real number.
Usually, the variables are related to the system, and so «
describes an atomic requirement that should be satisfied
by the system states. As we mentioned, ¢/,0 and < are
typical modalities in temporal logic that denote until, always
and eventually operators, respectively, and these operators
allow STL to express more complicated properties than the
atomic ones. For the semantics of the language, STL not only
equips with the boolean semantics but also with quanti-
tative robust semantics, which can quantify the degree of
satisfaction/violation of the system in terms of the STL
specification. There is a more comprehensive introduction
of STL [38] for the interested reader.

3 APPROACH

In this section, we introduce our framework, SIEGE, for
providing ensemble control analysis for the given AI-CPS.

3.1 Overview of SIEGE

Our framework SIEGE initiates an early exploratory study
of ensemble methods on the control systems of AI-CPSs. We
leverage a novel semantics-based abstraction to decompose
the large state space and transparently inspect the status
of the system. Four new ensemble methods are designed
with the utilization of semantics information from the ab-
stract model. We evaluate the newly proposed methods
with comparisons to individual controllers and two clas-
sical ensemble methods by different specifications on each
system. Figure 1 depicts the overview of SIEGE. At a high
level, SIEGE contains three components: DRL sub-controller
training, semantics abstraction, and ensemble strategies.

DRL sub-controller training. As sub-controllers play a
foundation in the ensemble system, it is necessary to obtain
reliable sub-controllers as constituents. In the context of
multi-requirement control, we aim to train sub-controllers
with diverse decision logic. To achieve this goal, we concen-
trate on training DRL agents with different DRL algorithms,
as well as the reward function setting. (Section 3.3.1)

Semantics abstraction. We then perform model abstrac-
tion to empower the ensemble analysis. We construct the
abstract model by semantics-based state abstraction, action
abstraction, and transition abstraction. A refinement process
is applied to minimize the semantics error between concrete
states and abstract states. (Section 3.2)

Ensemble strategies. Finally, we use the ensemble strate-
gies to aggregate the action of the low-level controllers. The
ensemble strategies in our study are from three categories:
classic strategy, semantics-based strategy and coordinator-
based strategy. (Section 3.3.2)

3.2 Semantics-based Abstract Model Construction

In this subsection, we describe the steps of building the
semantics-based abstract model.

Definition 1 (Semantics-based abstract model). A semantics-
based abstract model is a tuple (S, A, T, 50,7, ©), where S
is a set of abstract states, A is a set of abstract actions, T
S x A — Sis a set of transition, 7 : S x A x S — [0,1] is the
transition probability function which gives the probability
to the transitions, 5y is the set of initial state, and © is the
semantics space.

Semantics space © = {¥(s1,P),...,9(sn, P)} is a hy-
perspace that contains the semantics values that reflects the
degree of satisfaction regarding the system specifications
® = {¢1,...,pm}. Based on the enclosed physical informa-
tion, each concrete state can be mapped into the semantics
space to reveal its satisfaction w.r.t the specifications. We will
introduce more details about semantics and the mapping
mechanism in the following sections.

To construct the model, we first conduct a large number
of simulations of the CPS with respective sub-controllers,
which aim to collect enough characteristics of the system.
Taking the simulation data and the AI-CPS as input, we
then profile the system to extract information, i.e., semantics,
actions, and transitions, which can represent the system
behavior. The input to the abstraction is a set of traces that
records the semantics information, actions, and transitions
taken during the simulation. Then, we abstract the seman-
tics, action, and transitions to construct our semantics-based
abstract model. In the remainder of the subsection, we
describe the detailed procedure of state abstraction, action
abstraction, transition abstraction, and the refinement procedure.

3.2.1 State Abstraction

As mentioned in Section 2.3, existing commonly used
state abstraction methods fall short of handling the high-
dimensional and continuous state space of AI-CPS. In par-
ticular, the policy-irrelevant and Q-irrelevant abstractions
are not precise enough to reflect the unique behavioural
characteristics of the controllers, and the model-irrelevant
is a desirable solution but is hard to implement in practice.
Therefore, we propose a new type of abstraction method,
i.e., semantics-based abstraction, to tackle this challenge.
Let us first define what semantics is.

Definition 2 (Semantics). The semantics 9 € R’ of a concrete
state s € R™ is defined as follows:

I(s, @) = (02+,...,0%7),

where ® = {¢1,...,9 s} is a list of specifications and 0¥ €
R represents the degree of satisfaction of the system with
respect to the specification .

Intuitively, the semantics reflects the status of the system
with respect to the desired specifications. The advantages
of using semantics to augment the concrete states are two-
fold. First, it can represent the system behaviors in the
case of multiple requirements. For industrial-scale CPSs, mul-
tiple requirements arise inevitably during the design and
development of the complex system. Here, semantics is a
suitable measurement for the degree of satisfaction of the
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system with respect to multiple requirements. In addition,
semantics can be used as an abstract representation of the
original state space. Typically, the state space of the system is
high-dimensional, which is hard to analyze. Semantics, as a
low-dimension representation of the system, can effectively
catch the system behaviors triggered by the huge number of
input signals.

We use Example 1 to illustrate how the semantics is used
to describe system behavior.

Example 1. Let us consider an autonomous vehicle with
the adaptive cruise control (ACC) system, shown in Fig-
ure 3. ACC receives the information from cameras, lidar, and
radar sensors and outputs an acceleration or deceleration
command to manipulate the vehicle’s speed. There are two
requirements for the system: (1) distance requirement ©g;st,
which means the vehicle must maintain a safe distance
from the leading car; (2) velocity requirement e, Which
says velocity should be close to the user-set cruising speed
when the distance requirement is satisfied. The degree of
satisfaction of the distance control is obtained by: 04t =
tanh(dre; — dsafe), Where (dre; — dsafe) measures a quanti-
tative value about to what extent the safety distance require-
ment is satisfied or violated. Namely, a large negative value
represents a serious violation of distance specification where
the relative distance between two cars is much less than the
required safety distance, which also indicates the potential
risk of an accident. Likewise, for velocity specification, the
degree of satisfaction 6,,.; is measured by the deviation from
the user-set velocity (Vego — User)- A positive value for the
degree of satisfaction of velocity will be generated if the
velocity deviation is within a specific threshold; otherwise, a
negative value is given to represent a violation. Suppose, in
state s, the degree of satisfaction of distance requirement is
15, and the degree of satisfaction for velocity is —7 (negative
number represents the violation of the requirement). The
semantics of ACC is ¥(s, @) = (ffdist fPveio) = (15, —T).

Remark 1. As the degree of satisfaction aims to reveal
the satisfaction/violation of the system behavior w.r.t. the
target system specifications, the developers should have
clear specifications from the documentation of their ap-
plications regarding safety, stability, operation efficiency,
etc. Then, to properly and systematically define the degree
of satisfaction, we recommend the developers identify the
reference values of violation/satisfaction regarding each
specification. Namely, the system output values/conditions
can indicate whether the system is operating normally or
problematically. Next, the developers can use mathematical
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functions (e.g. Hyperbolic tangent) to normalize the target
system outputs within a unified scale such as [—1, 1]. Note
that, to maintain the sensitivity and preciousness of the
degree of satisfaction, we suggest normalizing the values
with clipping mechanisms; namely, the boundary values
that denote serious satisfaction/violation and any values
that exceed such boundaries should be regularized. This
approach is vital, especially for the system outputs with
large available ranges. Once the regularized values are
settled, the developers should carefully check that any pos-
itive/negative values should explicitly represent a certain
degree of satisfaction/violation with no cross-over areas.

After the semantics is obtained, each concrete state s; in
the semantics space is a vector (6! , ..., 607 ). Such a granular
representation is still impractical for further analysis since
each dimension of the state is continuous, which means the
state space could be prohibitively large. Thus, we perform
state abstraction to group the states that are close.

We perform two steps to construct the abstract states.
First, since the scale of different requirements might be
different, we perform normalization to normalize the data
into a unifying scale. Specifically, the degree of satisfaction
is normalized to [—1, 1]. A positive (negative) number indi-
cates the case of satisfaction (violation), and a higher/lower
number represents the requirement that is more satisfied
(violated) by the system.

Then, we partition the J-dimensional space into H}-jle j
segments, such that there are K; segments on each dimen-
sion:

d = |1, ubl],

where d/ is the i-th segment on j-th dimension, [b] and ub]
are the lower bound and the upper bound of the segment.

The space partition problem is turned into an optimiza-
tion problem, which is stated as follows.

maximize ubg — lb{

subject to A < (ubf — lb{ ) < Hyax
|§z| > N, @
MEAN{@Z; - ]E[Gg]} < zans
MAx{egj — E[Og]} < €iaxs

where di and dij,x are the minimum and maximum
lengths of a segments on j-th semantics dimension, §] =
{s| 07 € d!} is the set of concrete states whose semantics
value 67 falls in interval d?, ni; is the minimum number of
concrete states in the segments on j-th dimension, ef;z,y and
eliax are the predefined average and maximum tolerances of
the abstraction errors on j-th dimension. Equation 1 ensures
each segment would contain enough concrete states while
maintaining a low abstraction error.

In this way, the concrete states with similar values across
all semantics dimensions are mapped to the same abstract
state:

s={sil0} ed' nnol ed A e, d) ),

je{1...J}}.
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We denote this abstract semantics state space as S. More-
over, the semantics of an abstract state is

0(5,®) = (02",...,087),07 = MEAN{9;| 5 € g}.
Example 2. After normalization, say, the concrete semantics

of ACC in Example 1 is s = (0.65,—0.38). After solving
Equation 1, a possible partition is

d} = [~1,-0.4],d} = [-0.4,1.0]
d? =1[-1,0.3],d% = [0.3,1].

The abstract states would be
s1={sil 0, eding? edt}, s ={
5y = {si| 6! cdbng? e d%},§4 = {si| 6l cdbng? e dg}

si| 61 e di N6 € dg}

As a result, the concrete semantics would belong to 55.

Remark 2. A good abstract model should be a succinct
and precise model at the same time. Succinctness means
the number of states should be small, while preciseness
implies that the semantics error between the abstract states
and concrete states is small. Note that there is a trade-off
between these two requirements: smaller abstract space, i.e.,
less abstract states, may lead to greater error in terms of
semantics values, and vice versa.

Thus, in Equation 1, we utilize three parameters to
modify the preciseness of the abstraction: 1) the minimum
distance between two segments dy;y, 2) the minimum num-
ber of concrete states contained in an abstract state nyy,
and 3) maximum distance between two segments dyax.
The minimum distance ensures two segments should reflect
different semantics levels, and the minimum number of
enclosed concrete states prevents the occurrence of redun-
dant segments which only contain a few concrete states. In
addition, we notice that some special concrete states indicate
critical circumstances, namely, extreme violation or satisfac-
tion with specifications. Merging these concrete states into
the neighbour abstract states may cause a significant error
in semantics values; thus, we use the third parameter, max-
imum distance, to split these particular states as individual
abstract states. The values of the semantics of an abstract
state are computed as the average semantics values from all
enclosed concrete states.

Note that the parameters of abstract error tolerances can
be modified regarding the precision and the model size
requirements; namely, a tighter error threshold can corre-
spondingly bring a more precise model but larger abstract
state space. The first tolerance, ej;zay, for the average error
is to assure the representative and the overall accuracy of
the abstraction. Ideally, each abstract state should represent
a group of concrete states with similar semantics meanings,
so the average error of each semantics should be relatively
small to prevent an abstract state from drifting from its
actual physical status. Similarly, for ey, if a large average
error appears, the corresponding model may over-compress
the state space where excessive concrete states with notably
different semantics have been aggregated to an identical
abstract state.

3.2.2 Action and Transition Abstraction

For action abstraction, we first leverage the uniform partition
to split the action space into identical-length intervals. In
other words, the k-dimensional action space is split into
m* sub-space where there are m segments with an identical
length on each dimension. Then, we transform the concrete
action to the interval that the action belongs to, which is the
corresponding abstract action. That is to say, for a concrete
action a € [u, (], the abstract action @ = [u, []. We denote that
abstract action space as A.
With abstract state space S and abstract action space A, we
construct the abstract transition spaceas T : Sx A — S, which
are a set of concrete transitions between concrete states. In
particular, if there exists a concrete transition between s € 5
sand s’ € &, then an abstract transition is set up accordingly
between the abstract states 5 and &, where s and s’ are
" concrete states, and 5 and 5’ are abstract states An abstract
transition contains all the concrete transitions that share the
same starting and destination abstract state. Moreover, we
augment the abstract model with a transition probabilities
function. Specifically, we use 7(5,a,5’) to denote the con-
ditional probability of visiting §' given the current state §
and the current action a, and ), 57(5,a,5") = 1. The
transition probability is defined as:

- {(5,a,8) €T |s5€S,ac A3 €S}
 HGa,)eT|seSaec Al
In other words, the probability is computed as the number

of concrete transitions from 5 to § executing action @ over
the overall outgoing transitions from 5 given action a.

S,a,8

n(

3.2.3 Refinement of State Abstraction

Algorithm 1: Refinement of Semantics-based Ab-
straction
Input: A list of specifications ® = {¢1,...,¢s}, a

set of concrete states S, the maximum and
minimum lengths of the segment dy,x and
dyin, the minimum number of concrete states
in a segment 1y, the error thresholds eq,r
and e,r.q, and the reduction level threshold

Tcur
Output: An abstract state space S
Let refined « False, S + 0,
while refined = False do
forje{l,...,J}do

Ldfe

SEGMENTPARTITION(S, 6%7 | dyax, dyins Poaiin)
D+« {d,...,d"}
S « STATEMAPPING(D)
(€curs Eprea) < COMPUTEERROR(S, 9)
lf <5cur7 5pred> > <ecura epred> and
REDUCTION_LEVEL < 7., then
Update dyax, dvin, Tvin €lse
| refined ¢ True

=W N =

® 9 o u

o

return S

We propose an algorithm for refining the state abstrac-
tion, which targets at reducing the semantics error between
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the abstract states and the corresponding enclosed concrete

states. The algorithmic schema of the refinement procedure

is depicted in Algorithm 1.

Given a list of specifications ®, a set of concrete state

S, the maximum and minimum lengths of the segment

duax and dyy, and the minimum number of concrete states

in a segment Ny, the refinement procedure produces the

refined abstract space S. Essentially, the refinement is a

while-loop to adjust the partition parameters (Line 2-12),

and the workflow is summarized as follows:

e For each dimension in the semantics space, it conducts
partition by solving Equation 1, and generates corre-
sponding segments d’ (Line 3-4). After the partition, a
coarse abstract state space S is built (Line 5-6).

o Then, it computes the semantics error e.,, and €,,.4 (Line
7), which have the following meaning:

- The current state semantics error ., is computed as

MEAN{O? - E[Ggf’]},

where 5 are the group of concrete states inside the
abstract state 5. ¢.,, describes the semantics status
of the current abstract state, i.e., whether the abstract
semantics represents the concrete semantics precisely.

- The prediction semantics error €,,.q is

MEAN{@%——EW%L.”,ﬁg——EW;}}

where & is the set of the concrete destination states
enclosed by the abstract state 5’ following the abstract
transition 5 x @ — {5},...,5"}. We are concern about
the semantics error of the incoming state as it is utilized
in the guidance of the action selection, which will be
described in Section 3.3.2.

e The computed e.,, and eg,.q are compared with the
predefined threshold e, and e,..q (element-wise), and
REDUCTION_LEVEL, which is the rate of the number of
states after and before abstraction, is compared with the
reduction level threshold r.,, (Line 8). This leads to two
cases:

- If the errors exceed the threshold, which means the
preciseness and succinctness of the abstract model are
not satisfied, we adjust the parameter dyiy, duax, and
Ny, to refine the model, based on a pre-generated list
of 3-tuple (Line 9). Each tuple is a sequence of the three
parameters, and each element is generated as follows:
Al is a set of values from 0.01 to 0.1 with the step size
of 0.001, d{;4 is a set of value from 0.005 to 0.1 with the
step size of 0.005, and ni;y is a set of value from 0.1% to
10% with the step size of 0.1%. The list is a permutation
of the values of three parameters. The automatic update
procedure iterates the list and picks an element from it.

- Otherwise, we set refined to True.

e The algorithm returns the refined abstract space S (Line
12).

Remark 3. Our semantics-based abstraction method not
only narrows the huge state space of CPSs but also provides
a human-interpretable way to describe the status of a system
in terms of the degree of satisfaction with different specifi-
cations. Namely, despite the numerous system information
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collected by sensors, designers can understand the sys-
tem characteristics and controller behaviors intuitively and
transparently. More attention can be called regarding the
safety and functional requirements during the construction
of control systems in AI-CPSs.

Remark 4. Algorithm 1 is guaranteed to converge even
if the error parameters e.,, and e,..q are set to values
very close to zero. Because in the worst case, the algorithm
returns the original concrete model, where the errors are
Zero.

3.3 Ensemble Control

In this subsection, we introduce two parts of the ensemble
framework: sub-controllers, which provide the fundamental
control logic of the system, and the ensemble strategy, which
decides how to combine the output of the sub-controllers.
The portrait of the ensemble control is depicted in Figure 4.

3.3.1 Sub-controller

For sub-controllers, in order to choose the optimal decision

in different scenarios, we aim to train them towards diverse

decision logic and cover different requirements. Towards
this goal, we mainly focus on the reward function setting and
diverse DRL algorithm selection.

e Unlike traditional control systems, the decision-making
strategy of DRL controllers is predominantly determined
by their reward functions [57]. The reward function decides
whether an action taken by the agent in a state is good or
not. In the context of multi-requirement control, we set
the reward function as the weighted sum of the degree
of satisfaction to the specification, which leads the sub-
controllers to satisfy all the requirements at the same time.
Specifically, the reward R for the sub-controller is defined
as:

J
R=> wbf,
=1

where w; € [0,1] is the weight parameter and 6¢¢ is
the degree of satisfaction w.r.t. the specification ;. By
tuning the weights w;, we can adjust the behavioural
preference of the DRL agent on the specifications, es-
pecially when dealing with multiple control objectives.
For instance, in Example 1, the ACC system has two
operation requirements @gis; and @yeo. Assuming the
distance requirement is more important, wq;s; could be
set as 0.9, and wy.;, could be set as 0.1, in order to train
the sub-controller towards the compliance of distance
requirement.

e Besides the reward functions, we choose different DRL
algorithms, e.g., DDPG, TD3, and SAC, to expand the
diversity of the policies since even with identical re-
ward functions, different DRL algorithms are with distinct
control strategies. For instance, DDPG and TD3 agents
use a deterministic policy actor to generate actions that
maximize the long-term cumulative reward. In contrast, a
SAC agent produces actions from a stochastic Gaussian
actor according to a probability distribution. An agent
with a stochastic algorithm is expected to present better
robustness and stability under environments with high
randomness [58].
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Fig. 4: Ensemble Control System

To conclude, we construct multiple DRL controllers with
diverse behaviour characteristics so that the combination of
the controllers can balance out their individual weaknesses
while taking their own advantages. The diversity of the con-
stituent controllers builds the foundation of the ensemble
framework.

3.3.2 Ensemble Strategy

As the cornerstones of the ensemble framework, constituent
DRL sub-controllers output a set of candidate actions fol-
lowing their own policies. The next challenge is how to
merge these actions in order to deliver a synergistic impact
on the required task. In SIEGE, Ensemble strategy, which is
based on the constructed semantics-based abstract model,
aims to provide the control action fusion so that the en-
semble controller can outperform the individual controllers.
In particular, we propose six ensemble strategies to explore
the potential capabilities of ensemble control systems in Al-
enabled CPS, and they are of three categories:
o Classic strategy: Majority Voting and Average.
e Semantics-based strategy: Top-1 Semantics Prediction and
Top-k Semantics Prediction
e Coordinator-based strategy: Coordinator and Coordinator
(with prediction)
In the following, we denote the set of actions at time ¢
from [ sub-controllers (I is the number of sub-controllers)
as {a,...,al}, and the output of the ensemble strategy at
time ¢ as act’. We omit the superscript ¢ for simplicity.

Classic Strategy. The classic strategy includes Majority Vot-

ing and Average.

e For majority voting, the final control output is the
mean value of all concrete actions output from the sub-
controllers that belong to the abstract action with maxi-
mum votes:

act = MEAN{a\ a€ avote}v

where G,te is the abstract action with maximum votes,
a is the concrete actions that belongs to Gyt and output
from the sub-controllers.

o Average strategy takes the average value among actions
from all sub-controllers as the final output:

act = MEAN{al, Ceey al},
where [ is the number of constituent controllers enclosed
by the ensemble framework.

Semantics-based Strategy. To tackle the multi-requirement
control challenge, we leverage the semantics information on
the semantics-based abstract model.
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e Top-1 Semantics Prediction. We rank the action by the sum
of the semantics of incoming abstract states and take the
mean of concrete action from the sub-controllers in the
top-1 abstract action as the output.

n

act = MEANS a|a € Gtop1, Gropt = argmax {ZHﬂ(EQ, D)
ac{an,....,ar} ~;_1

|sxa—{3,...,5, }},
where a is the concrete actions from the sub-controller
that belong to Gtop1, Grop1 is top-1 abstract action, 5 is the
current abstract state, @ is the abstract action, {3}, ...,35),}
is the set of incoming states after taking action @ in current
state 5 (there is typically a set of incoming state after
taking action), {@i, ..., a;} is the abstract actions of [ sub-
controllers, § is the incoming abstract state after taking
action @, and (5, ®) is the semantics of the incoming
state 5. An action is neglected in the ranking if a negative
number exists in the predicted semantics, as a negative
value indicates a violation of a specification.

o Top-k Semantics Prediction. Similar to the above strategy,
we also rank the action. However, we take the mean
of concrete actions that belong to the top-k abstraction
actions as the output action.

Coordinator strategy. Besides the deterministic strategies
introduced above, we design stochastic strategies, which
are able to explore other potential optimal actions and
perform an adaptive selection. A hierarchical architecture
in reinforcement learning has demonstrated its promising
abilities to decompose a long-term decision-marking task
into simpler sub-tasks [59]. Therefore, besides the single-
layer ensemble methods introduced in classic strategies and
semantics-based strategies, we further propose a two-layer
hierarchical ensemble structure to extensively explore the
capability of hierarchical ensemble control in the context of
AI-CPSs. Namely, instead of using rule-based deterministic
strategies to aggregate the control outputs from constituent
DRL sub-controllers, we design stochastic strategies, which
are able to explore other potential optimal actions and per-
form an adaptive selection. Particularly, inspired by the ex-
ploration and exploitation principle of reinforcement learn-
ing, we utilize a "high-level” DRL agent, i.e., coordinator,
for the action selection.

In contrast to the constituent DRL controllers in the first
layer, a new DRL agent, the coordinator, is trained to select
the proper action from the first layer controllers. Namely, the
DRL coordinator does not output concrete control signals
for the system actuator but selects the output from one of
the DRL sub-controllers as the final output. The reward
function for the coordinator is slightly different from the
sub-controllers. All specifications have equal weights in
the reward function, as we consider these safety-related
specifications to be equivalently important during the prac-
tical operation. In addition, we set a huge penalty for the
violation of any specifications to make the coordinator select
the optimal action to prevent any violations. Note that we
have tried this reward structure on the DRL sub-controllers
but failed to obtain an optimal controller which can tackle
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the multi-objective optimization regarding different system

specifications. This is one of the motivations for leveraging

ensemble methods in AI-CPSs, as we have mentioned in

Section 1.

Particularly, inspired by the exploration and exploitation
principle of reinforcement learning, we utilize a “high-level”
DRL agent, i.e., coordinator, for the action selection.

o Coordinator. This strategy contains a DRL agent to perform
an assessment and pick the optimal action for the task.
Given the system state as input, the task of the coordina-
tor is to select an optimal action from the sub-controllers.

o Coordinator (with prediction). The second coordinator strat-
egy takes additional information on the predicted seman-
tics. The predicted semantics, from the semantics-based
abstract model, aims to enhance the collaboration ability
of the higher-level DRL coordinator.

4 EVALUATION

This section presents the experimental evaluation of our
ensemble framework, including research questions, subject
systems, experiment setup, and evaluation results.

4.1 Research Questions

4.1.1 RQI1: How is the semantics abstraction in terms of
succinctness and preciseness?

When dealing with industry-level CPS with large state
and action space, a succinct and precise abstract model helps
reduce the complexity and enhance the explainability of a
system for further process. However, the abstraction pro-
cedure may lead to the loss of preciseness and may not
produce a succinct model.

In this RQ, we aim to investigate the succinctness and
preciseness of our abstraction method in terms of system
semantics. We check the succinctness by comparing the
reduction rate of the number of states before and after the
abstraction. To assess the preciseness, we measure the mean
and maximum errors between the semantics of the concrete
and abstract models.

4.1.2 RQ2: To what extent can the abstract model be help-
ful for predicting the incoming semantics?

One of our new ensemble methods is leveraging the
prediction of the semantics of the very next states. We want
to investigate whether the predicted semantics is accurate
enough for further analysis. To answer this RQ, we sample
new traces and compare the predicted semantics on the
abstract model with the ground truth semantics on the
concrete traces.

4.1.3 RQ3: Can the ensemble-based controllers be com-
petitive to and outperform the standalone controller?

One of the main goals of constructing an ensemble-based
control system is to compensate for the deficiencies of the
single controller under multiple requirements. Therefore,
we intend to compare the performance of the single con-
troller and two ensemble-based controllers with traditional
methods. In particular, the performance is measured by
multiple specifications, which will be detailedly introduced
in Section 4.4.3.
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4.1.4 RQ4: Do our newly proposed ensemble strategies
perform better than traditional ensemble methods?

As the classic ensemble methods lack guidance while
selecting the candidate actions, we aim to investigate if
the semantics prediction can indeed enhance the ensemble
strategy. Besides the deterministic methods, we also target
to study the capability of DRL-heretical ensemble meth-
ods. In this RQ, we assess the performance of the newly
proposed ensemble methods, i.e., the prediction approaches
and the DRL-coordinator approaches. We compare them
with the traditional ensemble methods and the individual
controllers, where the same metrics in RQ3 are used for
evaluation.

4.2 Studied Systems and Specifications

We next introduce the five CPS systems that we studied for
our framework and the specifications.

As we intend to investigate the effectiveness of our
approach in practical applications, the systems for exper-
iments must reflect the industry-level complexity, namely,
large continuous state space and action space with multiple
operational requirements. In addition, a candidate system
should be released by official industry or research insti-
tutes with detailed documentation of system goals and
specifications. Therefore, we can semantically abstract the
system, evaluate the controller performance and construct
additional new RL controllers with various behaviours. The
five representative systems we select for experiments cover
multiple industrial domains such as autonomous driving,
powertrain and robotics. Three out of five systems come
with traditional built-in controllers, like Model Predictive
Control (MPC) and PID, and the other two systems are
released with RL controllers.

4.2.1 Systems

We collect five subject CPSs to conduct our experiments.
These systems cover different industry domains with var-
ious specifications and control requirements. We consider
the experimental results of these systems can bring a com-
prehensive understanding of our framework on diverse Al-
CPS. Table 1 briefly introduces the tasks and industrial
domains of the five CPS systems that studies. Specifically,
Column # Blocks shows the number of blocks of each
system in the Simulink Model, which can represent the
relative complexity of a CPS system. These systems have
been used in the research community [13], [60], [61], [62],
[63], [64], [65], [66]. Some of the systems, such as AFC are
developed by the collaboration between industry companies
and MathWorks. We believe these systems can reflect the
challenges and characteristics of industry-level CPSs and are
good benchmarks for academic research and development.
The instruction of functionalities and specifications of each
system is presented in the following sub-sections.

Adaptive Cruise Control (ACC). ACC is originally released
by MathWorks [67]. As we briefly introduce in Section 3.2.1,
this system is programmed to keep the relative distance d,.;
between two vehicles greater than a safe distance d,qf. by
controlling the acceleration of the ego car a.4,. When the
distance is secured, the ego car should maintain a user-
set cruising velocity vg¢. The movement of the lead car
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TABLE 1: The collected CPS with target domains, introductions, and number of blocks.

Subject CPS Domain Description #Blocks
Adaptive Cruise System (ACC) Driving assistant ~ Maintain a safe distance and operate within the target speed 297
Abstract Fuel Control (AFC) Powertrain Maintain a reference air-to-fuel ratio inside the cylinder 281
Lane Keeping Assistant (LKA) Driving assistant ~ Keep a vehicle traveling along the centerline of the lanes 421
Automated Parking Valet (APV)  Parking assistant ~ Park a vehicle on a target spot without collision 1497
Ball Balance Control (BBC) Robotics Balance a ball at the center point of a plate 1225

Ego car
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Safe Distance

Relative Distance

Safe Distance

Ego car Lead car
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Fuel Command

Engine
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(a) Adaptive Cruise Control (ACC)
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Fig. 5: Subject CPS illustration

is controlled by the acceleration of the lead car ajcqq. The
safe distance is dynamically changed based on the relative
velocity between two vehicles.

Abstract Fuel Control (AFC). AFC is an air-fuel control
system released by Toyota [61]. As illustrated in Figure 5 (b),
this system is designed to maintain the air-to-fuel ratio AF
from a reference value AF,.; inside a powertrain cylinder.
The external inputs are pedal angle 6;,, and engine speed
wg, where 6 is a pulse train signal which defines a steady
condition and an edge condition to the system. For edge
conditions (either rising or falling), the normalized error of

= % should be less than 0.05; and for the steady
condition between two edge events, ;1 has a tighter con-
straint of 0.02. These two conditions come out cyclically; the
controller should regulate the error value ;o under assigned
thresholds, respectively.

Lane Keeping Assistant (LKA). This system is collected
from MathWorks [68]. LKA measures the lateral deviation
diq¢ and relative yaw angle 6,4, between the vehicle and the
centerline of the road and keeps the vehicle travelling along
the centerline by adjusting the front steering angle 6s;ce;.
The goal of the system is to drive both lateral deviation and
yaw angle close to zero.

Automated Parking Valet (APV). We collect APV from
MathWorks [69]. Under a parking lot environment, APV
parks the vehicle in a target empty spot from a random
initial position. The car moves at a constant speed, and

the output signal from the controller is the steering angle
Osteer- Successful parking is counted when the position error
dcqr and the orientation error 6,44 are lower than specific
thresholds with no collision (dj;ger > 0) occurred during
the parking maneuver.

Ball Balance Control (BBC). This system is constructed
based on a seven degree-of-freedom (DOF) Kinova Gen3
robot [70], [71]. The manipulator is tasked to balance a small
ball at the center point of a flat plate. The system has certain
thresholds for the position error of the ball dp,y; from the
plate center and the orientation of the plate itself 8,;4¢.; and
the controller outputs the torque commands 71,7 of two
joints to manipulate the plate from pitch and roll axes.

4.2.2 Specifications

Table 2 summarizes the . Specifically, we classify specifica-
tions into two categories: Major and Minor according to
their importance.

e Major. Such as distance and velocity in ACC, deviation
and angle in LKA; each system has unique specifications
regarding safety and efficiency. We mark these specifica-
tions with a star* Table 2, 7, 8 to denote them as major
ones.

e Minor. Unlike the unique major specifications, all five
systems share three minor specifications (marked with a
circle®) to represent additional properties:

— Stability: stability measures how stable the system is
during the entire simulation; particularly, a system is
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TABLE 2: The STL specifications of the benchmark CPS. A star* denotes an essential specification; and a circle® denotes a

minor specification; these notations also apply to Table 7, 8.

Spec. Distance* Velocity* Stability® Resilience® Consistency®
I =10,30] I =10,30] I=10,30] 1=10,30],I' = [0,1] I =10,30]
ACC ®1 = dre1 > dsate Y2 = Y1 — (Vego = Vset) 3 = dre1 > (dsafe + 02) P41 = TP3, P42 = P3 Y5 = IaeAgo‘ <1
¢ =01(p1) ©=01(p2) © =01(ps) » = 01(pa1r = Oppaz) ©=05(ps)
Spec. Steady™ Edge* Stability® Resilience® Consistency®
1 =10,30] I =0,30]
I=1[0,30 , _ ’_
P11 = (0=8.8) A0 =a) - <;£11 v]@u oo1 = ~pz1 o p <0018 T [2; 30], 1 v [0,1] 1=10,30]
— _ = _ 41 = T3 A
AFC g2 = (0=a) A 0000 =88) " o0 $e2=em— A < 0.045 s = o ©s ,_\mc | <0.3
©1 = @11 V12 — (u < 0.02) @ = Or(p2) #3 :“"D“ #32 0 = 0r(pa1 — Oyrpa2) © = 01(ps)
¢ = 01(p1) »=0rles)
Spec. Lateral Deviation™ Relative Yaw Angle* Stability® Resilience® Consistency®
I =10,15] I=10,15] I=10,15] I=10,15],1' = [0, 1] I =1[0,15]
LKA @1 = |diat| <0.75 w2 = Oyaw < 0.26 p3 = |diat] < 0.6 P41 = TP3, P12 = @3 05 = 105...] <0.75
¢ =01(p1) » = 01(p2) » = 071(p3) ¢ =01(pa1 = Oprpaz) © = 01(ps)
Spec. Position™ Orientation* Stability® Resilience® Consistency®
I1=10,25
o11 = d{‘ }> 0 I =[0,25] I = [0,25] 1=10,25,1' = [0,1] I'=10,25]
APV ® —_Id MTT< 0.75 22 = |0heaa| < 0.17 3 = disdar > 0.25 P41 = TP3, a2 = 3 05 = |05..,] <0.52
12 = |dear .
=0 % =0 =0 — < =0 .
» =01(p11) A Cr1(p12) ? 1len) rle=) v 1(es) ’ 1lom 1 %42) ¢ 1(¢5)
Spec. Ball Position* Plate Angle* Stability® Resilience® Consistency®
I=1[0,20 I1=1[0,20 I=1[0,20 =020
= = = _ r_ B
[0, 20] [0, 20] [0, 20] I=10,20,,1"=[0,03]  _  _ | & <05
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TABLE 3: Hyperparameters of abstraction
ACC AFC LKA APV BBC
Semantics | Distance  Velocity | Steady  Edge | Deviation Angle | Position Orientation | Ball Plate
duvin 0.001 0.001 0.001 0.001 0.010 0.001 0.005 0.005 0.001 0.001
driax 0.005 0.005 0.100 0.100 0.050 0.005 0.050 0.050 0.020 0.020
NN 1.00% 1.00% 0.10%  0.10% 1.00% 1.00% 0.50% 0.50% 0.10%  0.10%

considered stable if it is not close to the edge condition
of major property violation.

— Resilience: Resilience inspects the recoverability of a
system against fluctuations. Namely, if a system runs
into an edge condition, we would like to know if it can
bounce back to steady conditions within a fixed time
interval.

— Consistency: This specification evaluates the oscillation
of the control output; namely, if a controller generates
a fluctuating signal, it may bring uncomfortableness
to crews, mechanical staining, and energy waste. An
unstable and steady control output is preferred from a
control unit.

4.2.3 Abstract Model Details

Hyperparameters. Table 3 summarizes the hyperparameters
of the abstraction. The semantics values in each dimension
are normalized from -1 to 1.

We set the same mean and maximum values for error
thresholds €., and €,,.4. The average semantics error eygan
to 0.005, which is 0.25% of the entire value range and the
semantics maximum error ey, is set to 0.2 which is 10%
over the value bound. The reduction level threshold is set to
0.5%.

Sub-controller setting. As we mentioned in Section 3.3.1,
each subject system contains nine DRL sub-controllers from
three state-of-the-art algorithms (DDPG [36], SAC [40], and
TD3 [37]) with different reward configurations. The sub-
controllers are trained with biased weights w; for each
degree of satisfaction regarding the specifications ¢; which
is normalized to [—1, 1]. More specifically, for the three sub-
controllers under each algorithm, two of them have weights
of [0.7,0.2,0.1] where 0.7 is assigned for one of the major
specifications, 0.2 is for the other major specification, and 0.1
is distributed uniformly to the other minor specifications.
For the third type of sub-controller, it is with weights config-
uration of [0.4, 0.4, 0.2], where two major specifications have
the same weight 0.4, and the rest is assigned to minor spec-
ifications. In addition, we incorporate the default controller
from the collected benchmark, e.g., proportional integral
derivative controller and model predictive controller. In
total, there are 10 sub-controllers for each AI-CPS.

Semantics.

For the degree of satisfaction, we manually and carefully
design the formula that can reflect the extent of the sat-
isfaction/violation for the specification of the system. The
formulae are in the form of Simulink blocks, which is hard
to display in the paper. Thus, we put the detailed formulas
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TABLE 4: RQ1 — Comparison of state, action and transition space between concrete and abstract models. (Total Con.: total
concrete samples. Uni. Con: Unique concrete samples. Abstract: number of abstract state. Reduction: level of abstraction.)

State Action Transition
System | Total Con. | Uni.Con. Abstract Reduction | Uni.Con. Abstract Reduction | Uni.Con. Abstract Reduction
ACC 7,442,000 6,014,268 891 0.0148% 5,287 459 11 0.0002% 6,106,552 6,526 0.1068%
AFC 2,820,000 2,820,000 225 0.0079% 1,449,622 13 0.0009% 2,714,989 2,070 0.0762%
LKA 830,500 226,211 403 0.1781% 226,904 11 0.0048% 227,715 1,814 0.7966%
APV 368,817 368,817 843 0.2285% 333,370 12 0.0036% 351,586 6,496 1.8476%
BBC 1,655,500 1,655,500 362 0.0218% 1,581,955 104 0.0066% 1,520,471 13,336 0.8770%
TABLE 5: RQ1 — Abstraction error of semantics in states
ACC AFC LKA APV BBC
Error Distance ~ Velocity | Steady Edge Deviation ~ Angle Position  Orientation Ball Plate
State Mean | 3.77E-03  3.85E-03 | 1.42E-03  1.54E-03 6.83E-04  9.06E-04 | 2.10E-03 1.58E-03 3.78E-03  5.02E-04
State Max 1.11E-01  1.21E-01 | 3.69E-02  7.58E-02 1.29E-01 1.08E-01 | 6.84E-02 2.48E-02 1.98E-02  1.42E-02

and computation of the degree of satisfaction for each
specification on our supplement website. In this work, we
choose two major specifications from each system, shown in
Table 2, to extract the semantics.

4.3 Experiment Setup

RQ1. To answer this RQ, we first simulate 1,000 times
with each sub-controller to collect the experiences from
10,000 episodes. The collected experience is then split into
a modelling set and a validation set with a ratio of 8 : 2.
The former is used to build the abstract model, and the
latter is to validate the semantics errors between the abstract
and concrete models. We use mean and max state semantics
errors, defined in Section 3.2.1, to measure the preciseness.

RQ2. We perform the experiment on the five CPS subject
systems. Similar to RQ1, we use 80% of the traces to con-
struct the abstract model and use the remaining 20% of the
traces to check the prediction error. Moreover, we compute
the mean error and maximum error of the predicted seman-
tics (defined in Section 3.2.3). Here, we take more concerns
on the maximum predicted semantics error since it heavily
affects the ensemble methods we proposed. If the predicted
semantics significantly deviates from the true value, the
ensemble methods may mistakenly drive the system toward
crashes.

RQ3. In terms of the evaluation, we simulate each type of
controller with 200 random generated episodes and com-
pare the performance between individual and semantics-
based controllers.

The specifications illustrated in Table 2 are all extracted
from the original documentation of each system. These
specifications represent the important operation require-
ments, such that any violations can possibly result in serious
accidents with human life and property losses. As these
two metrics are all specification-oriented, which intrinsically
reveals the behavior of the system w.r.t safety.

For each system, to produce a comprehensive evalua-
tion, we use multiple specifications as references (shown
in Table 2) which contain major specifications like safety,
efficiency, and minor specifications related to comfortable-
ness, resilience, etc. Considering the safety-critical features
of CPSs, we put more concerns on major specifications

and take other minor metrics as supplements to enrich the

diversity of the evaluation.

To deliver an in-depth evaluation, we propose two met-
rics for each specification:

o Satisfaction Rate (SATE): SATE computes the percentage
of satisfying simulations in which a specification has
never been violated. SATE = :L‘T , where n, is the number
of satisfying trails without any target specification viola-
tions, and nr is the number of total trails.

o Mean Absolute Error (MAE): As a complement to the
SATE metric, MAE reports the mean absolute error. Dif-
ferent controllers may have close SATE but different MAE
values; we consider the one with a smaller MAE as the
better. MAE = i > MEAN|y—g|, where y is the system
actual output, § is the reference output, and MEAN|y — |
measures the average value of the deviation from the
references in one trail.

SATE provides an overview satisfaction ratio regarding the

specifications, and MAE reveals a concrete average value

of the deviation from the references. Therefore, a safe and
robust controller should have a high SATE and a low MAE.

RQ4. Similar to RQ3, we use SATE and MAE evaluation
metrics to compare the performance between the newly
proposed ensemble strategies and the traditional ones. We
also pick the single controller with the best performance in
RQ3 in the comparison.

The Top-1 Semantics Prediction method takes action with
the highest predicted semantics values. We set k = 3 for the
second Top-k Semantics Prediction method.

In terms of the "high-level” agents in the DRL coordi-
nator strategy, we set these agents to put more attention on
the specification violations. For the coordinator, we choose
stochastic agent A2C, aiming to provide indeterministic
action selection. The reward functions of coordinator agents
have balanced weights of [0.4,0.4,0.1], where 2 major
specifications have the same weights 0.4, and the minor
specifications share the weight 0.1. Note that different from
the balanced sub-controller, for the coordinator agent, any
violation of specifications will cause an enormous penalty
(—1) to the final reward value. Such that any unsatisfaction
will not be overshadowed by other sub-rewards.

Software Dependencies. The ACC model requires the
Model Predictive Control and Control System MATLAB tool-
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TABLE 6: RQ2 — Abstraction error of semantics in predictions

ACC AFC LKA APV BBC
Error Distance  Velocity Steady Edge Deviation Angle Position  Orientation Ball Plate
Prediction Mean | 3.61E-03 3.53E-03 | 141E-03 146E-03 | 3.58E-04  6.91E-04 | 2.07E-03 1.44E-03 3.74E-03  4.89E-04
Prediction Max | 1.06E-01  146E-01 | 2.18E-02 4.41E-02 | 129E-01  1.19E-01 | 7.48E-02 2.48E-02 1.96E-02  1.62E-02
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boxes; the APV model requires the Automated Driving and
Robotics System MATLAB toolbox; the BBC model requires
the Simscape Multibody MATLAB toolbox. The training for
DRL agents in all models requires the Reinforcement Learning
MATLAB toolbox.

Hardware Platform. For DRL training and large-scale eval-
uation, we use four Lambda Tensorbooks, each of which has
an Intel(R) Core(TM) i7-10870H CPU @ 2.20GHz Processor
with 8 CPUs and 64G RAM, and an NVIDIA RTX 3080 Max-
Q GPU with 16 GB VRAM. The overall computation time of
our evaluation takes more than 550 hours.

4.4 Evaluation and Results

4.4.1 RQI1: How is the semantics abstraction in terms of
succinctness and preciseness?

We want to examine the effectiveness of the semantics
abstraction, i.e., whether the abstract models can shrink
the concrete state space while preserving the corresponding
semantics characteristics. Table 4 and Table 5 summarize the
abstraction details and the semantics errors of the abstrac-
tion results among five systems.

The reduction ratio, in Table 4, shows that abstract pro-
cedure can effectively reduce the state, action and transition
space 99.91%, 99.99%, 99.26%, respectively, on average for
all systems. Especially in ACC, AFC and BBC, the size of
abstract models only contains hundreds of unique abstract
states in contrast to the millions of concrete states in original
models.

In terms of the abstraction errors, from Table 5, the mean
error of state semantics is on average 0.0020. The maximum
semantics error for all systems is on average 0.0708. The
results indicate that our abstraction method can succinctly
and precisely describe the semantics characteristics in five
systems. The abstract model provides a simplified and in-
trinsic way to understand the system status.

Answer to RQ1: The semantics abstraction can effec-
tively reduce the complexity of the systems and pre-
cisely capture the semantics characteristics.

4.4.2 RQ2: Can we rely on abstract models to predict the
semantics of the incoming state?

We aim to investigate the effectiveness of our abstraction
method in terms of semantics prediction. If the abstract
model can precisely estimate the semantics of a state-action
pair, then the predicted semantics is expected to guide the
ensemble strategy of sub-controllers. Namely, the potential
failures can be noticed in advance, and the proper action can
be selected to keep the system operating on the right track.

Table 6 shows the error measurements of the semantics
between the predicted concrete states and the predicted
abstract states. We apply the same thresholds to examine

the efficacy of prediction regarding average and maximum
semantics errors, respectively. We notice that, regarding the
semantics prediction, the abstract model has a mean error
of an average 0.0018; and the maximum error of predicted
semantics is on average 0.0701. None of the errors in any
systems exceed the mean and maximum thresholds (0.005
and 0.2) from the abstraction refinement. These results show
that the refined abstract model is capable of accurately
predicting the incoming semantics based on the current
state-action pair.

Answer to RQ2: The semantics of the incoming states
can be precisely predicted based on the abstract model.
The semantics predictability of the abstract model is
reliable to provide meaningful guidance for new en-
semble strategies.

4.4.3 RQ3: Can the classical ensemble-based controllers
outperform the standalone controllers?

Table 7 shows the detailed evaluation results for controllers

with classical ensemble methods and a single controller in

each system. Figure 6 gives an intrinsic illustration for better
comparison among various controllers.

e ACC. The major metrics in ACC are distance and veloc-
ity, which indicate the safety and efficiency properties,
respectively. From Table 7, all ensemble controllers with
classical methods have a good performance on the dis-
tance metric. Particularly, the distance SATE of Average
methods is above 97%, the MAE is less than 0.01, and
the Majority-Voting method never violates the distance
specification in all testing episodes with 100% SATE.
From the velocity aspect, ensemble methods also give
competitive results. Noticeably, these controllers demon-
strate great capabilities in balancing the safety-related
distance metric and efficiency-related velocity metric.
Namely, the two classical ensemble methods achieve over
74% SATE on velocity while maintaining outstanding
results on distance. Most standalone controllers (except
for DDPG-3 and TD3-3) can only focus on one metric but
overlook the other.

o AFC. Neither individual controllers nor classical ensemble
controllers in AFC can perfectly maintain the reference air-
fuel-ratio under both steady and edge conditions. From
Table 7, the ensemble controllers can tackle steady and
edge metrics with about 95% SATEs and show over 80%
SATES on stability. Nevertheless, controllers like SAC-2
and TD3-1 also present similar performance. Therefore,
we do not observe the obvious advantages of classical
ensemble methods in AFC.

o LKA. The Majority-Voting and the Average methods show
an intermediate performance between DDPG controllers
and TD3 controllers. Namely, the DDPG controllers have
100% SATE on yaw angle but about 84% SATE on lateral
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TABLE 7: RQ3 — Performance evaluation of individual controllers and classic ensemble methods on 5 systems. The ensemble
methods are marked in gray, and the best result is highlighted in cyan.

ACC Distance* Velocity* Stability® Resilience® Consistency®
SATE MAE SATE MAE SATE MAE SATE MAE SATE MAE
MPC 59.80% 0.0725 81.20% 0.8681 53.40%  0.2380  2.20%  0.3812  57.20%  0.0980
DDPG-1 59.40% 0.4109 96.40% 0.6716 56.04% 02095  0.80%  0.6890  63.20%  0.1003
DDPG-2 57.80% 0.0934 84.60% 0.8162 54.80%  0.2185 4.00% 0.3862  58.40%  0.1121
DDPG-3 100.00% 0.0000 71.00% 1.3808 100.00%  0.0000 - - 100.00%  0.0147
SAC-1 57.60% 0.1342 90.80% 0.7621 55.40%  0.2196 1.20% 0.5443  56.20%  0.2033
SAC-2 66.40% 0.0592 79.20% 1.0127 59.40%  0.1760  9.00%  0.1259  61.80%  0.2468
SAC-3 65.00% 0.1206 76.20% 1.1686 62.40%  0.1437  14.00%  0.1378  62.00%  0.1964
TD3-1 56.80% 1.6749 95.20% 0.9534 54.80% 02125  0.00%  0.1733  96.40%  0.0271
TD3-2 69.00% 0.1693 81.00% 1.0724 59.40%  0.1731 4.00% 0.3891 74.00%  0.0315
TD3-3 98.40% 0.0276 75.20% 1.3358 7340%  0.0670  0.00%  0.7793  100.00%  .0173
Vote 100.00% 0.0000 74.20% 1.2107 80.40%  0.0080  0.50% 02795 16.00%  0.4133
Average 97.80% 0.0083 75.20% 1.1897 7340%  0.0347  0.80% 02501 80.80%  0.0215
AFC Steady™* Edge* Stability® Resilience® Consistency®
SATE MAE SATE MAE SATE MAE SATE MAE SATE MAE
PID 92.80% 0.0011 98.60% 0.0033 92.00%  0.0019 77.50%  0.1261 100.00%  0.0025
DDPG-1 80.00% 0.0065 80.00% 0.0048 25.00%  0.0143 100.00% 0.0404 100.00%  0.0042
DDPG-2 82.00% 0.0083 100.00% 0.0055 72.00%  0.0066  26.00%  0.0556 100.00%  0.0039
DDPG-3 81.50% 0.0129 99.50% 0.0064 450% 02070 100.00%  0.0000  100.00%  0.0038
SAC-1 94.00% 0.0047 99.00% 0.0038 37.00%  0.0020 100.00%  0.0000 100.00%  0.0061
SAC-2 97.50% 0.0026 97.50% 0.0035 86.50%  0.0009 100.00%  0.0000  100.00%  0.0047
SAC-3 51.50% 0.0119 98.00% 0.0062 26.00%  0.0373  57.50%  0.1241 100.00%  0.0044
TD3-1 100.00% 0.0031 95.50% 0.0034 74.00%  0.0018 100.00%  0.0000 100.00%  0.0044
TD3-2 94.00% 0.0040 94.00% 0.0038 28.50%  0.0016  45.50%  0.0136  100.00%  0.0069
TD3-3 99.00% 0.0029 87.50% 0.0040 89.50%  0.0004 100.00% 0.0000  100.00%  0.0045
Vote 94.50% 0.0029 96.00% 0.0035 81.00%  0.0011  100.00%  0.0000  100.00%  0.0059
Average 95.00% 0.0044 100.00% 0.0037 86.00%  0.0005 100.00%  0.0000 100.00%  0.0081
LKA Lateral Deviation* Yaw Angle* Stability® Resilience® Consistency®
SATE MAE SATE MAE SATE MAE SATE MAE SATE MAE
MPC 82.50% 0.4634 89.50% 0.1116 63.00% 02474  17.05%  0.4872  55.00%  0.5423
DDPG-1 80.00% 0.1064 100.00% 0.0129 69.50%  0.0131  36.07% 02242  12.50%  0.2275
DDPG-2 85.50% 0.0543 100.00% 0.0133 76.50%  0.0078  53.19%  0.1185  39.00%  0.2028
DDPG-3 91.50% 0.0617 100.00% 0.0147 81.50%  0.0047 75.68%  0.0405  0.50%  0.5710
SAC-1 91.00% 0.0558 93.00% 0.0198 81.00%  0.0034  94.74%  0.0088  83.50%  0.1698
SAC-2 87.50% 1.8354 81.00% 0.0921 80.00%  0.0747  60.00%  0.3074  5.00%  0.3262
SAC-3 91.00% 0.0522 86.00% 0.0240 81.00%  0.0087  97.37%  0.0100  52.00%  0.2465
TD3-1 93.00% 0.0419 96.50% 0.0148 86.50%  0.0028  96.30%  0.0062  4.00%  0.4270
TD3-2 93.00% 0.0561 96.50% 0.0183 85.00%  0.0030  92.86%  0.0119 0.50% 0.2864
TD3-3 93.00% 0.0386 96.00% 0.0118 86.50%  0.0028  96.30%  0.0062  26.50%  0.2852
Vote 91.00% 0.0501 98.50% 0.0143 80.00%  0.0044  92.50%  0.0125 7.00% 0.3410
Average 88.50% 0.0436 100.00% 0.0119 79.00%  0.0054 7857%  0.0414 89.00%  0.0945
APV Position*  Orientation*  Lidar*  Park Success* Stability® Resilience® Consistency®
MAE MAE MAE SATE SATE MAE SATE MAE SATE MAE
RL-origin 1.2385 0.2539 1.7669 87.50% 92.50%  0.0135 1.00% 0.8667  47.00%  0.2105
DDPG-1 0.9855 0.2546 1.7986 90.50% 96.00%  0.0021 1.00% 07500  27.00%  0.2498
DDPG-2 1.3251 0.2559 1.6863 86.50% 89.00%  0.0088 0.50% 09545  20.50%  0.2619
DDPG-3 1.3335 0.2956 1.7307 88.50% 91.00%  0.0058  1.50%  0.8333  13.50%  0.2443
SAC-1 1.1124 0.2088 1.8519 90.50% 97.00%  0.0031 0.00% 1.0000 4.00% 0.3852
SAC-2 1.2364 0.1440 1.8116 88.00% 93.00%  0.0081  0.00%  1.0000  550%  0.4147
SAC-3 1.1510 0.1889 1.7784 89.50% 92.00%  0.0045 2.00% 0.7500 2.50% 0.4042
TD3-1 1.2063 0.2685 1.8321 91.00% 94.00%  0.0034  1.00%  0.8333  8.00% 02170
TD3-2 1.2768 0.2217 1.8593 85.00% 89.50%  0.0149 1.00% 0.9048  46.00%  0.2700
TD3-3 1.3043 0.2451 1.8765 89.50% 92.00%  0.0105  2.00%  0.7500  70.00%  0.3000
Vote 1.2396 0.2121 1.8747 90.00% 94.50%  0.0028 0.00% 1.0000 3.50% 0.4229
Average 1.3702 0.2374 1.9293 89.00% 98.50%  0.0014  0.00%  1.0000 82.50%  0.1270
BBC Ball Position* Plate Angle* Stability® Resilience® Consistency®
SATE MAE SATE MAE SATE MAE SATE MAE SATE MAE
RL-origin 92.00% 0.0844 89.00% 0.0809 86.50%  0.0447  40.74% 03324  26.33%  0.0506
DDPG-1 92.50% 0.2766 88.50% 0.0618 8250%  0.0445 5429% 02964 47.67%  0.0468
DDPG-2 86.50% 0.4917 82.00% 0.1905 83.00%  0.0830  38.24%  0.4756  63.33%  0.0486
DDPG-3 90.50% 0.5421 81.00% 0.1449 78.00%  0.0754  50.00%  0.3534  62.33%  0.0349
SAC-1 91.50% 0.3192 89.00% 0.0849 85.00%  0.0441  33.33%  0.4079  41.00%  0.0560
SAC-2 87.00% 0.6206 88.00% 0.1340 76.00%  0.0955  45.83%  0.4019  74.33%  0.0454
SAC-3 89.00% 0.0686 89.00% 0.1872 84.50%  0.0713  25.81%  0.3504  64.67%  0.0509
TD3-1 93.00% 0.1219 92.00% 0.0542 84.50%  0.0414 51.61% 0.2784  77.50%  0.0039
TD3-2 93.00% 0.3685 90.50% 0.1166 85.50%  0.0564  44.83% 03735 19.67%  0.1562
TD3-3 92.50% 0.3323 83.00% 0.0987 82.00%  0.0555  52.78%  .3027  57.00%  0.0168
Vote 91.00% 0.3624 91.00% 0.0981 82.00%  0.0599  47.22% 03371  48.33%  0.0587
Average 89.50% 0.4329 82.50% 0.1103 80.50%  0.0656  46.15%  0.3896  95.00%  0.0062
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deviation, while TD3 controllers have 97.67% SATE and
92.33% SATE of the two major specifications respectively.
On the other hand, the Majority-Voting method has 91%
and 98.5% SATESs, and the Average method obtains 88.5%
and 100% SATEs. In addition, we find that the Average
method has better consistency results than the Majority-
Voting one.

e APV. As mentioned in 4.2.1, successful parking is counted
if the vehicle precisely stopped at the target spot without
any collision during the maneuver. In Table 7, the park
success metric reports the overall successful parking rate
over the 200 simulations. The DDPG-1 agent and SAC-
2 agent obtain the lowest position MAE and orientation
MAE respectively, but the highest parking success rate is
achieved by TD3-1 agent. Although the Average method
has the best stability and consistency SATE result, the
traditional ensemble methods do not show major advan-
tages on major specifications.

e BBC. TD3-1 agent outperforms other controllers on both
the position and the angle specifications, where the
SATE reaches 93% and 92%, respectively. In terms of
the traditional ensemble methods, the Majority-Voting
achieves 91% SATE on both position and angle specifi-
cations, while the average approach has 89.5% and 82.5%
SATEs, respectively. The Majority-Voting method has bet-
ter performance on major specifications than the Average
method, but the Average one has the best consistency
result than any others. In general, the traditional ensem-
ble controllers do not perform obviously better than the
individual ones.

To summarize, in many cases, the performance of single
controllers is better than traditional ensemble strategies. The
traditional ensemble methods cannot adaptively select and
combine the optimal controllers under different conditions.
Nevertheless, the Average method has exceptional results
in terms of the consistency metrics, we think the aver-
aged outputs compensate the oscillation phenomenon when
switching between different controllers.

Answer to RQ3: The traditional ensemble methods do
not obviously outperform the individual controllers.
New ensemble strategies are needed to dynamically
combine the strengths of the constituent controllers.

4.4.4 RQA4: Are the newly proposed ensemble strategies
better than traditional ensemble methods?

In this RQ, we would like to investigate the performance of
our newly proposed ensemble. Table 8 and Figure 6 show
the evaluation results.

e ACC. The semantics-based methods, Top-1 and Top-k,
have distance SATE over 92% and velocity SATE over
80%, which show a better compensating ability between
two major metrics. The resilience and consistency of these
two controllers have similar performance compared with
individual controllers but are better than the classical
ensemble methods.

The Coordinator with prediction method achieves 100%
and 85.1% SATE on distance and velocity metrics, respec-
tively, which is the highest comprehensive scores among
all types of controllers. The Coordinator method with-
out prediction also obtains 100% STAE on the distance
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specification but a relatively lower score, 71.2%, on the
velocity metric. Furthermore, both methods have 100%
SATE on the stability metric, which outperforms any
other ensemble controllers.

AFC. The semantics-based ensemble controllers in AFC
have slightly higher SATE values on steady and edge
metrics but much smaller MAE than traditional ensem-
ble controllers. It indicates that, for major specifications,
the semantics-based methods outperform the classic ones
with smaller deviations from reference values. Mean-
while, all ensemble controllers achieve 100% STAE on
both resilience and consistency metrics.

We also observe that the Coordinator(prediction) method
obtains 100% SATE over steady, edge, resilience and con-
sistency specifications, which obviously outperforms any
other controllers. Namely, this Coordinator method gen-
erates a consistent and resilient synergistic control output
that never violates the safety requirements during entire
testing runs. For the Coordinator(no-prediction) method,
it has close performance like the Top-1 semantics method
but provides better stability; therefore, we consider it the
second-best controller in AFC.

LKA. We find that the traditional methods behave better
than the semantics-based methods for the lateral devi-
ation and yaw angle specifications in LKA. Although
the two semantics-based methods obtain 100% SATE on
the yaw angle metric, the SATE and MAE of deviation
metric are slightly worse than the obtainable from classic
methods. The Coordinator(prediction) method shows the
best overall results on major metrics, namely, 92% and
100% SATESs on deviation and angle, accordingly.

APV. We do not find a notable difference between
semantics-based and traditional ensemble controllers re-
garding the major specifications. However, the Majority-
Voting and Top-1 semantics methods have a higher suc-
cess parking rate than the averaging methods (Average,
Top-k semantics).

The top 2 highest successful parking rates are achieved by
the two coordinator methods, and the MAEs of position
and orientation metrics are fairly low as well. The perfor-
mance of these two controllers in terms of consistency is
not good.

For the parking environment in APV, as the original
model released by MathWorks [69], the controller only
outputs the steering angle to adjust the moving direction
while the vehicle is running at a constant speed at 2
m/s. And the resilience specification in APV measures the
distance from the target vehicle to other parked vehicles.
Therefore, when the target vehicle is moving too close
to other vehicles, the controller cannot make the vehicle
move backwards but change the steering direction to
avoid any collision. It is not really efficient, as the vehicle
takes a relatively long time to get back to a safe distance
from other cars by only controlling the steering angles
while the vehicle keeps moving at a constant speed. This
situation happens, especially when the initial position of
the target vehicle is relatively close to other parked cars.
We consider this to be one of our future works; namely, we
propose to enable the speed control and the steering angle
control at the same time to build a more sophisticated
parking system.
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TABLE 8: RQ4 — Performance evaluation of new-proposed ensemble methods on 5 systems.

ACC Distance* Velocity* Stability® Resilience® Consistency®
SATE MAE SATE MAE SATE MAE SATE MAE SATE MAE
DDPG-3 100.00% 0.0000 71.00% 1.3808 100.00%  0.0000 - - 100.00%  0.0147
Vote 100.00% 0.0000 74.20% 1.2107 80.40%  0.0080 0.50% 0.2795  16.00%  0.4133
Top-1 Pred 92.00% 0.0335 81.00% 0.9843 51.80%  0.2299 5.40% 0.3335  52.50%  0.2294
Top-k Pred 94.20% 0.0472 80.40% 0.9785 53.60%  0.2201 5.00% 0.2356  43.00%  0.3410
Coordinator 100.00% 0.0000 71.20% 1.3799 100.00%  0.0000 - - 52.40%  0.2743
Coordinator(pred)  100.00% 0.0000 85.10% 0.8025 100.00%  0.0000 - - 57.00%  0.2164
AFC Steady™* Edge* Stability® Resilience® Consistency®
SATE MAE SATE MAE SATE MAE SATE MAE SATE MAE
TD3-1 100.00% 0.0031 95.50% 0.0034 74.00%  0.0018 100.00%  0.0000 100.00%  0.0044
Average 95.00% 0.0044 100.00% 0.0037 86.00%  0.0005 100.00%  0.0000 100.00%  0.0081
Top-1 Pred 97.50% 0.0075 99.50% 0.0028 12.50%  0.0362 100.00%  0.0000 100.00%  0.0039
Top-k Pred 99.50% 0.0023 94.00% 0.0033 75.50%  0.0011  100.00%  0.0000 100.00%  0.0039
Coordinator 97.00% 0.0043 97.00% 0.0038 81.50%  0.0012 100.00%  0.0000 100.00%  0.0039
Coordinator(pred)  100.00% 0.0096 100.00% 0.0054 86.50%  0.0009 100.00%  0.0000 100.00%  0.0043
LKA Lateral Deviation* Yaw Angle* Stability® Resilience® Consistency®
SATE MAE SATE MAE SATE MAE SATE MAE SATE MAE
TD3-3 93.00% 0.0386 96.00% 0.0118 86.50%  0.0028 96.30%  0.0062  26.50%  0.2852
Average 88.50% 0.0436 100.00% 0.0119 79.00%  0.0054 7857%  0.0414  89.00%  0.0945
Top-1 Pred 83.00% 0.0824 100.00% 0.0243 70.50%  0.0144 42.37%  0.2052 0.50% 0.3000
Top-k Pred 85.00% 0.0537 100.00% 0.0120 7350%  0.0091 50.94%  0.1447 36.00%  0.1997
Coordinator 87.00% 0.0742 99.50% 0.0173 79.00%  0.0060 73.81%  0.0666 0.10% 0.3451
Coordinator(pred) 92.00% 0.0171 100.00% 0.0117 85.50%  0.0041 89.66%  0.0153  27.00%  0.2716
APV Position*  Orientation* Lidar* Park Success* Stability® Resilience® Consistency®
MAE MAE MAE SATE SATE MAE SATE MAE SATE MAE
TD3-1 1.2063 0.2685 1.8321 91.00% 94.00%  0.0034 1.00% 0.8333 8.00% 0.2170
Vote 1.2396 0.2121 1.8747 90.00% 94.50%  0.0028 0.00% 1.0000 3.50% 0.4229
Top-1 Pred 1.2835 0.2217 1.9195 90.00% 97.50%  0.0013 0.00% 1.0000 85.50%  0.1265
Top-k Pred 1.2655 0.2127 1.8808 88.50% 95.50%  0.0047 0.00% 0.9556  78.00%  0.1325
Coordinator 1.1676 0.1716 1.8922 91.50% 95.50%  0.0021 0.00% 1.0000 2.50% 0.3545
Coordinator(pred) 1.0631 0.1487 1.7616 92.50% 96.00%  0.0068 0.00% 1.0000 3.50% 0.4128
BBC Ball Position* Plate Angle* Stability® Resilience® Consistency®
SATE MAE SATE MAE SATE MAE SATE MAE SATE MAE
TD3-3 92.50% 0.3323 83.00% 0.0987 82.00%  0.0555 52.78% 03027 57.00%  0.0168
Vote 91.00% 0.3624 91.00% 0.0981 82.00%  0.0599  47.22% 03371  48.33%  0.0587
Top-1 Pred 93.50% 0.0664 91.00% 0.0379 85.00%  0.0313  46.67% 02697 19.33%  0.1695
Top-k Pred 90.00% 0.2500 90.50% 0.0669 81.00%  0.0575  3947% 03717 53.00%  0.0459
Coordinator 92.00% 0.1739 91.50% 0.1139 83.00%  0.0511 47.06%  0.2632  44.00%  0.0493
Coordinator(pred) 93.00% 0.0805 95.00% 0.0437 85.50%  0.0275  44.83% 02988  53.00%  0.0452

o BBC. The Top-1 semantics method has the highest SATE
and lowest MAE on ball position and stability metrics and
equivalently good results on plate angle and resilience
metrics. Particularly, the position MAE of the Top-1 se-
mantics method is 0.0664, and the angle MAE is 0.0279,
which are about 80% and 70% less than the MAE of
traditional methods, respectively. In terms of consistency,
the Average method has the highest MAE 95%, and the
Top-1 semantics method gets the lowest 19.33%.

Not surprisingly, the Coordinator(prediction) methods
give the best performance on major metrics with 93% and
95% SATEs on the position and the angle specifications.
Moreover, the stability of the Coordinator(prediction)
methods is slightly higher than other ensemble methods.

To conclude, the semantics-based methods have better
or similar performance compared with traditional methods
on four systems. Namely, the semantics predictions can
reinforce the controller selection logic and drive the system
toward safe and efficient operations. Note that a well-
refined abstract model is required to provide precise pre-
dictions of incoming semantics; otherwise, the semantics-
based controllers can be misguided to unexpected states.
For Coordinator methods, the evaluation results indicate
the Coordinator(prediction) approach can outperform other

controllers obviously. The Coordinator methods are capable
of controlling more dynamically and strategically which
brings better control flexibility than deterministic methods.

Answer to RQ4: The semantics-based ensemble strat-
egy can deliver similar or better performance than both
traditional ensemble methods and individual control
methods in all systems except LKA. The Coordinator
ensemble strategies are helpful in enhancing the over-
all capability and reliability of the control system re-
garding multiple operation objectives. Among the five
experimental CPSs, the Coordinator with prediction
method outperforms others.

5 DISCUSSION

State space reduction. High-dimensional continuous state
space is one of the major challenges in reinforcement learn-
ing, as it makes the search for optimal policy computa-
tionally intractable. In addition, unlike the commonly used
reinforcement learning benchmarks with discrete state space
(e.g. CartPole [36], Mountain Car [72]), CPSs usually come
with complicated dynamics and multiple operation require-
ments which require more efforts to construct reliable con-
trol systems.
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Fig. 6: RQ4 — Performance comparison on standalone and ensemble controllers. For each row, radar 1 is for classic ensemble
method with built-in. radar 2 is newly proposed methods. radar 3,4,5 are for Coordinator(pred) with individual.

Our abstraction can decompose the concrete state space
and transfer to a more compact abstract state space. Each
abstract state should represent a group of concrete states
that share similar physical information regarding the degree
of satisfaction with different specifications. Therefore, by ob-
serving the abstract states enclosed by each simulation trail,
we can intuitively understand the satisfaction/violation
w.rt to specifications. A brief overview of the behavior
characteristics of the controller can be derived so that we
can interpret the strengths and weaknesses of the current
controller regarding different system requirements.

Classic ensemble methods such as majority-vote cannot be
directly applied to the CPS scenario due to the continuous
action space. Certain abstraction techniques are required to
narrow the action space to limited options; therefore, further
various ensemble strategies become adaptable. Moreover,
it is also challenging to conduct semantics prediction on
concrete state space. Since when encountering unseen con-
crete states or actions during simulations, concrete state-
based semantics predictions are unavailable as no reference
exists in collected experience. Our semantics abstraction
maps the concrete states from different regions onto specific

abstract states accordingly. Namely, we are able to transfer
unseen concrete states to proper abstract states and predict
the incoming semantics, which can guide our newly pro-
posed ensemble strategies. Overall, semantics abstraction
is necessary as it not only reduces the large state space
with better transparency but initiates the predictability of
the semantics of the incoming states, which is vital to our
ensemble strategies.

Based on the results from five experiment systems, our
abstraction method can significantly reduce the size of the
state, action and transition space over 99%, and restrict the
semantics errors within an acceptable range. We notice that
the reduction level of a system is not determined by the
dimensions of the state space but by the diversity of its
behaviour in terms of the specifications. For instance, BBC
has a much larger state space than LKA, but its abstract state
space is conversely smaller. This finding fits the practical
situation that many subsets in the state space can have
diverse and distinct values but represent a similar level of
satisfaction regarding the system specifications. Therefore,
abstracting the system based on concrete state values can be
expensive and intricate; and the corresponding abstracted
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model may not effectively scale down the system and accu-
rately conclude the system dynamics. Thus, our semantics-
based abstraction tackles this problem from the semantics
aspect in order to effectively and precisely decompose com-
plex CPSs.

Guidance from semantics predictions. We investigate
whether the semantics can provide guidance to empower
the controller fusion strategies within the ensemble frame-
work. To do that, we utilize the abstract model to predict
the incoming semantics and monitor the possible outcomes
of choosing different transitions. In this way, the ensemble
method can avoid dangers in advance and drive the system
toward optimal performance. Table 5 demonstrates the abil-
ity of the semantics prediction that the abstract models have
low prediction errors on the validation dataset.

Enhanced ensemble strategy. In Section 4.4.3 and 4.4.4,
we propose two comparison sets between: 1) individual
controllers and traditional ensemble methods, and 2) newly
proposed ensemble methods and the classical ones. Also,
we apply multiple major and minor specifications to obtain
a detailed and comprehensive evaluation for each controller.
From the enriched evaluation results, we discover that the
ensemble controllers can deliver better performance than
individual controllers, the semantics prediction can rein-
force the ensemble strategies, and finally, the Coordinator
methods can outperform any others in each system in
terms of major specifications. We consider that the semantics
predictions from the abstract model may have a large error
when encountering certain corner state-action pairs. As
illustrated in Table 6, the maximum error of the predicted
semantics is much higher than the average error. The rule-
based semantics-guided ensemble strategies, namely, Top-1
and Top-k, may produce a sub-optimal control signal. To
mitigate such drawbacks, we can either set tighter thresh-
olds on abstract models to maximally reduce the number
of these corner samples or craft advanced semantics-guided
ensemble strategies with extra attention on special system
conditions. However, we notice that Coordinator (hierar-
chical) methods can aware of such special system behavior
during training. We consider the coordinator method can
compensate some weak spots from the abstract model and
produce the ensemble output more adaptively.

Besides the Majority-Voting and Averaging methods,
some advanced decision fusion strategies have been pro-
posed to enhance the overall ensemble performance, such
as Bayes Optimal Classifier [52], Stacked Generaliza-
tion [73], Super Learner [74], Consensus [75], and Query-
By-Committee [76]. We do not apply these methods in our
study since 1) unfeasibility in a large dataset and complex
environments, and 2) unavailability for tasks in CPSs. Partic-
ularly, Bayes Optimal Classifier, Stacked Generalization, and
Super Learner are not applicable to systems with multiple
sub-learners and large datasets. Methods like Consensus,
and Query-By-Committee, are specialized for unsupervised
learning and active learning, respectively, that do not fit the
context of CPSs.

In this paper, we take the first step towards a semantics-
guided safety enhancement framework for AI-CPS. The em-
pirical evaluations show that adopting semantics guidance
and DRL hierarchical control into ensemble methods is a
promising solution to improve the safety, efficiency, robust-
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ness and reliability of AI-CPSs. The semantics abstraction
can help developers 1) understand the system status, 2)
simplify the system for better manipulability, and 3) support
the ensemble strategies regarding the specifications. More-
over, a DRL-coordinator can dynamically combine multiple
controllers to drive the system toward an optimal status
under various circumstances.

6 THREATS To VALIDITY

In this section, we discuss the potential threats to our study
and the actions that we have taken to mitigate them.
Internal threats. The abstraction level could be an internal
factor that impacts the analysis results. In our study, we
design our semantics and abstraction that can reflect the
satisfaction of the system at different granularities, w.r.t.
requirements. Ideally, a suitable semantics-oriented abstrac-
tion can succinctly and precisely reduce the size of state
space while preserving the semantics properties.

In particular, we propose a set of parameters to balance
the trade-off between the level of abstraction and abstraction
errors. The final abstract model has been iteratively refined
to succinctly and effectively narrow the state space and
maintain sufficient accuracy in semantics description and
prediction.

Conclusion threats. The validity of our results can be
affected by randomness factors. The randomized external
inputs and initial conditions in simulations generate differ-
ent testing episodes. To mitigate such threats, and further
counteract the effects brought by randomness, we repeat
the evaluation experiments several runs and report the
Satisfaction Rate and the Mean Absolute Error to obtain fair
and comprehensive results.

Construct threats. It is possible that the evaluation metrics
we proposed might not fully characterize all the perfor-
mance aspects of the system and reflect the characteristics of
controllers. To mitigate this threat and assess the controller
from a comprehensive aspect, we apply multiple specifica-
tions on each system from multiple angles (trying to be as
comprehensive as possible) and categorize them into major
and minor cases to validate the effectiveness of the ensemble
approaches we proposed. Moreover, we also assign two
metrics, SATE and MAE, for each specification to obtain a
detailed understanding of the general satisfaction rates and
the concrete error values. Thus, we believe our evaluation
metrics are appropriate, and the results are convincing, to
our best extent.

External threats. Generality to diverse CPSs beyond the
studied subject CPSs could always be an external threat,
due to the diversity of tasks, specifications, state dimension-
alities and controller outputs, making our results might not
always be generalized to other CPSs. To mitigate this threat,
we select a diverse set of candidate CPSs from various
industrial domains that cover a group of widely studied and
representative tasks. In addition, we also trained multiple
types of RL controllers with different learning algorithms,
reward functions and agent configurations to extensively
explore the behaviour space and the capabilities of ensemble
methods.
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7 RELATED WORK

Many algorithms and approaches have been proposed by
researchers to study the state abstraction and ensemble
methods in diverse aspects such as supervised learning,
active learning, transfer learning. However, limited liter-
ature considers adopting these methods to CPSs with Al
controllers.
Ensemble methods in CPS. Song et al. [13] build a publicly
available AI-CPS benchmark as a playground for the com-
munity, and we take two systems, ACC and AFC, from their
work. They took an early step in controller hybridization,
but they only used naive methods to combine different con-
trollers to demonstrate the possibility of hybrid controllers.
There are other existing literature [77], [78], [79], [80],
[81], [82], [83], [84], [85], [86] have reviewed the capabilities
of the hybridization between ensemble methods and real-
world applications. For instance, Liu et al. [80] proposed a
hybrid ensemble DRL model for wind speed forecasting.
They demonstrate that the new DRL ensemble approach
can predict accurate results in all wind cases and out-
perform traditional optimization-based ensemble methods.
Moreover, Ghosh et al. [81] also proposed a multi-agent DRL
ensemble framework to perform an optimized air traffic
control. They show that the new approach can dynamically
suggest adjustments of aircraft speeds in real-time, and their
proposed method has the best evaluation results compared
with the other three state-of-the-art benchmark approaches.
The works above differ from our approach as we lever-
age the specification-oriented semantics to guide an end-
to-end DRL ensemble framework. Rather than traditional
deterministic ensemble strategies, we utilize a high-level
DRL agent as a coordinator to integrate actions in real-
time. Moreover, we focus on the systems with multiple
operation requirements in parallel to demonstrate the ca-
pabilities of balancing multi-requirements in safety-critical
environments.
State abstraction. State abstraction has been widely studied
by researchers to reduce the size of the state space. Du
et al. [87], [88] used Markov model-based abstraction to
analyze the robustness of stateful deep learning systems.
However, they focused on the state space from recurrent
neural networks. Unlike CPSs, the states in RNN do not
have physical meanings related to system requirements. In
addition, they use principle component analysis (PCA) to
reduce the state dimensionality and uniformly split state
space into regular grids. Their abstraction method does
not fit in our case, as each state in CPSs contains physical
information from sensors, and the uniform partition cannot
preserve the semantics distribution.
Multi-objective control. The multi-objective control tasks
contain conflicting operation goals where an equilibrium
solution is needed to satisfy each requirement as much
as possible [89]. Many traditional control methods and Al
approaches have been proposed by researchers to overcome
such multi-requirements applications in various domains.
Ji et al. [90] studied a new multi-objective control strategy
for inverter-interfaced distributed generation, which utilizes
scenario classification and reference determination to dis-
tribute the control authority among different controllers.
They showed that by dynamically switching the controllers
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based on different occasions, the new control strategy could
maximize the positive sequence voltage to mitigate the risk
of sudden power loss; and suppress the oscillation in active
power to extend the long-term life of the capacitor. Their
work demonstrates a feasible solution for multi-objective
control by strategically activating controllers with different
operation objectives.

Chen et al. [91] proposed a deep Q-network (DQN)-
based agent to achieve multi-objective control for energy
management in hybrid electric vehicles. The DQN agent is
in charge of controlling the motor speed, the CVT gear ratio,
and the engine power to maintain the optimal slip ratio, the
engine speed and the fuel consumption, respectively. The
authors reported that the single DRL-based strategy is fac-
ing the problems like computation cost and high complexity.
They pointed out that one possible solution is constructing
a distributed parameterized control strategy.

Other works [92], [93], [94], [95] have reported several

methods to improve the performance of control systems
under different multi-goals applications. We notice that two
types of approaches are promising: 1) a multi-stage hybrid
structure can help to tackle the priority issues from multi-
requirements, and 2) a distributed multi-controller frame-
work can reduce the complexity of control strategy design
in large-scale systems.
Ensemble learning in ML. Lee et al. [96] presented SUN-
RISE, a unified ensemble method for off-policy RL algo-
rithms from a Q-ensemble aspect. They integrated various
RL agents following two key components: weighted Bell-
man backups, which re-weight Q-values according to un-
certain estimation, and an inference method to select actions
based on upper bounds of confidence. Although we have
close objectives of unifying a group of RL agents to achieve
better control performance, their work greatly differs from
ours since the collaborated agents in our approach have
diverse mechanics in terms of Q-value generation, that they
cannot be ensembles based on re-weighted Q-values. Also,
the action selection criteria we proposed are powered by
semantics predictions and an additional high-level.

Chen et al. [97] introduced an architecture for DRL which
is designed to reduce the instability issue in deep Q learning.
Their approach is designed to stabilize the Q-value’s shake
by reducing the variance of target approximation error
during the training process. Their results show that this
architecture can statistically improve the stability perfor-
mance on several classical control tasks. Notably, their work
focused on improving the training process for a specific
type of DRL algorithm; in contrast, our method considers
the action synergizing techniques. Namely, with an existing
set of DRL controllers, how to efficiently and dynamically
manage the control authority in safety-critical tasks.

Besides the applications in control tasks, some litera-
ture adopt ensemble methods in prediction [98], optimiza-
tion [99], detection [100], etc. Albahli et al. [98] studied
the ensemble-based defect prediction method for software
products. They fused the outputs from three individual
classifiers to build an improved prediction model; then,
a DRL agent enclosed in this model is used to capture
false alarms in real-time predictions. Although their works
targeted software environments that do not contain any
physical plants and dynamics like CPS, they demonstrated
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that DRL agents, ensemble methods, and predicted infor-
mation can cooperate to deliver superior performance. Xu
et al. [101] proposed an adaptive subspace optimization
ensemble method to handle the high-dimensional data im-
balance problem. They show that a more robust and diverse
ensemble system can effectively rebalance the real-world
high-dimensional dataset and outperform other state-of-the-
art imbalance learning methods. Xiao et al. [100] studied a
new ensemble learning approach to detect traffic incidents,
where individual SVM and KNN models have been com-
bined with a strategy to improve the accuracy of indecent
detection. Their study shows that ensemble methods are a
promising approach to enhance the robustness and reliabil-
ity of safety-related systems.

8 CONCLUSION

We present SIEGE, a semantics-guided ensemble control
framework for AI-CPS, which aims to construct an efficient,
robust, and reliable control system for multi-objectives, and
complex CPSs. A semantics-based abstraction is used to
decompose and describe the system status in real-time and
predicts the incoming semantics regarding the specification
satisfactions. We propose a series of ensemble methods that
leverage the semantics predictions to optimally generate
synergistic control signals from multiple DRL controllers.
Further, we adopt an additional DRL agent as a coordinator
to form an end-to-end DRL hierarchical control framework
to perform a more flexible ensemble strategy. We performed
comprehensive evaluations to investigate the performance
of different individual controllers and ensemble methods on
five industry-level, complex CPSs. The results demonstrated
that SIEGE outperforms the state-of-the-art individual con-
trollers and traditional ensemble methods. Our framework
is also helpful in delivering a more robust, efficient, and
safety-assured control system. To facilitate further research
along this direction, we made our source code and experi-
mental details publicly available on our project website.

With the increasing trend of CPSs adopting Al compo-
nents in the loop, we hope our early exploratory work in
this paper could inspire further extensive research along
this direction towards providing better quality, safety and
reliability assurance techniques for the upcoming era of Al-
enabled cyber-physical systems.
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