
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 2024 1

Look Before You Leap: An Exploratory Study of
Uncertainty Analysis for Large Language Models

Yuheng Huang, Jiayang Song, Zhijie Wang, Shengming Zhao, Huaming Chen, Felix Juefei-Xu, and Lei Ma�

Abstract—The recent performance leap of Large Language
Models (LLMs) opens up new opportunities across numerous
industrial applications and domains. However, the potential
erroneous behavior (e.g., the generation of misinformation and
hallucination) has also raised severe concerns for the trustwor-
thiness of LLMs, especially in safety-, security- and reliability-
sensitive industrial scenarios, potentially hindering real-world
adoptions. While uncertainty estimation has shown its potential
for interpreting the prediction risks made by classic machine
learning (ML) models, the unique characteristics of recent LLMs
(e.g., adopting self-attention mechanism as its core, very large-
scale model size, often used in generative contexts) pose new
challenges for the behavior analysis of LLMs. Up to the present,
little progress has been made to better understand whether and
to what extent uncertainty estimation can help characterize the
capability boundary of an LLM, to counteract its undesired
behavior, which is considered to be of great importance with
the potential wide-range applications of LLMs across industry
domains. To bridge the gap, in this paper, we initiate an early
exploratory study of the risk assessment of LLMs from the lens
of uncertainty. In particular, we conduct a large-scale study
with as many as twelve uncertainty estimation methods and
eight general LLMs on four NLP tasks and seven programming-
capable LLMs on two code generation tasks to investigate to what
extent uncertainty estimation techniques could help characterize
the prediction risks of LLMs. Our findings confirm the potential
of uncertainty estimation for revealing LLMs’ uncertain/non-
factual predictions. The insights derived from our study can
pave the way for more advanced analysis and research on LLMs,
ultimately aiming at enhancing their trustworthiness.

Index Terms—Large Language Models, Deep Neural Networks,
Uncertainty Estimation, Software Reliability

I. INTRODUCTION

LARGE Language Models (LLMs) have demonstrated im-
pressive capabilities in miscellaneous Natural Language

Processing (NLP) tasks and promising adaptability in practical
applications across diverse domains, including but not limited
to content moderation [1], code generation [2], conversational
AI [3], and personalized content recommendations [4]. The
scale of deployment is vast, addressing the needs of diverse
user demographics and industries. As a prominent example,

Yuheng Huang is is with The University of Tokyo, Tokyo 113-8658, Japan
(e-mail: yuhenghuang42@g.ecc.u-tokyo.ac.jp).

Jiayang Song, Zhijie Wang and Shengming Zhao are with the University
of Alberta, Edmonton, T6G 1H9, Canada (e-mail: {jiayan13, zhijie.wang,
shengmi1}@ualberta.ca).

Huaming Chen is with The University of Sydney, Australia (e-mail:
huaming.chen@sydney.edu.au).

Felix Juefei-Xu is with New York University, New York, NY 10012, USA
(e-mail: juefei.xu@nyu.edu).

Lei Ma is with The University of Tokyo, Tokyo 113-8658, Japan, and also
with the University of Alberta, Canada (e-mail: ma.lei@acm.org).
� Lei Ma is the corresponding author.

Sue Lyon was 14 years old

when she made Lolita in 1962.

Prompt How old was Sue Lyon when she made Lolita?

LLM
Response

Uncertainty
Estimation

Max
Ent

Min
Prob

Min
VR

Max
VRO

Sue Lyon was born in 1954. She

was 24 when she made Lolita.

Example: Question Answering with correct response and risky response

Max
Ent

Min
Prob

Min
VR

Max
VRO

GPT-3.5 GPT-3

Fig. 1: Uncertainty estimation for a QA task.

Meta has launched foundation models such as the Llama
family [5], [6]. By September 2023, these models had driven
the creation of over 3,500 enterprise projects and inspired more
than 7,000 GitHub repositories [7].

Despite the attractive performance that LLMs present and
their rapid evolution within both academics and industries,
an urgent common concern about LLMs has the propensity
of generating erroneous information without warning. Such
phenomenon of erroneous generation can exhibit in terms of
different manifestations (e.g., hallucination [8], disinformation
[9], bias [10]) across various tasks. In general, the current
LLMs are found to have the tendency to generate problematic,
nonfactual responses that are not from training sources or
misguided by biased data. However, these responses are often
presented in a natural human-like tone [11], [12]. Such char-
acteristics cause erroneous information to be highly mixed and
intertwined with confident and factual contexts, making their
detection and localization difficult without close inspection and
diligent fact-checking [13]. As an example, Fig. 1 (GPT-3)
depicts an example of an LLM answering a question with
nonfactual information.

Risk assessments thus become crucial in the process of
mitigating such threats. A recent survey highlights that 98%
of respondents, encompassing domain experts and civil so-
ciety members, firmly believe that AGI (artificial general
intelligence) labs should undertake risk assessments before
deployment [14]. For the AI industry, implementing com-
prehensive risk assessment methods is not just a technical
necessity but also an ethical obligation. Major tech corpora-
tions [15] such as Microsoft [16], OpenAI [17], Amazon [18],
and Google [19], along with non-governmental organizations
(NGOs, e.g., the Centre for the Governance of AI [20]), are
fervently working towards developing safe, secure, transparent,
reliable and responsible LLMs and AGI applications. As
a driving force behind open and collaborative AI research,
Meta also commits substantial resources to the development
of responsible AI, emphasizing trustworthiness, transparency,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 2024 2

12 Subject LLMs

LLaMA2-7B LLaMA3-8B Gemma2

Phi3 CodeQwen1.5 DeepSeek

Code Llama

GPT-3 GPT-3.5

open-source closed-source

12 Uncertainty Estimation Methods
Single Inference

Max Prob Avg Prob

Max Ent Avg Ent

Sample-based

Sample VR

Sample VRO

Perturbation-based

Max VR

Min VR

Max VRO

Min VRO

MaxDiff VR

MAxDiff VRO

Look Before You Leap

RQ1: Uncertainty Estimation for NLP Tasks RQ2: Limitations in Uncertainty Estimation for NLP Tasks

RQ3: Uncertainty Estimation for Code Generation Task RQ4: Limitations in Uncertainty Estimation for Code Generation Task

4 Subject Tasks

Question Answering

Text Summarization

Machine Translation

Code Generation

NLP

NLP

NLP

SE

GPT-4o GPT-4o-mini

DeepSeek

Fig. 2: A high-level overview and workflow of this paper.

robustness, etc. [21], [22]. These endeavors encompass a range
of reports (e.g., Building Generative AI Responsibly [23]),
open-source tools (e.g., the model interpretability framework
Captum [24]), and datasets (e.g., Hateful Memes [25]).

Although there has been substantial work on other AI
models, risk assessments for LLMs are still in their infancy.
Due to their billions of parameters, vast amounts of (often
inaccessible) data, and potential closed-source nature, LLMs
present significant challenges for analysis and safeguarding.
Yet, such a safeguard is crucial, especially considering the
widespread adoption of LLMs. Stakeholders from research
communities, industry, open source initiatives, NGOs, and
businesses may all be negatively affected by untrustworthy
LLMs. Uncertainty estimation, aimed at gauging the confi-
dence level of model outputs [26], [27], [28], stands out as a
promising approach for identifying risks in general Machine
Learning (ML) models. Such techniques also have the po-
tential for detecting erroneous generation from LLMs [29]
even under black-box settings. It is thus possible to take
them as plug-and-play tools in both academic and industrial
scenarios. For example, Fig. 1 shows that a higher uncertainty
score could possibly indicate an erroneous generation of an
LLM. However, it is still unclear whether and to what extent
uncertainty estimation methods could do when measuring and
characterizing an LLM’s capability limitations. Furthermore,
it also raises questions such as “Are there better practices for
employing these methods in practical scenarios”, “Do we need
further adaptations from the industrial perspective to better
cater to the distinct features of LLMs (e.g., task diversity and
high computational cost)”, etc. To the best of our knowledge,
up to the present, there is a lack of a general framework that
integrates different uncertainty estimation methods for LLMs,
as well as a systematic study to investigate the effectiveness of
uncertainty estimation in characterizing an LLMs’ capabilities.

To bridge this gap, in this paper, we present an exploratory
study to understand the trustworthiness of LLMs from the
lens of uncertainty estimation. Considering the generality
and versatility for various application scenarios, we strive
to identify suitable methods to minimize the requirement of

LLMs internal information (e.g., model architecture, model
parameters). Such criteria enable these methods to be seam-
lessly adapted and incorporated by end-users of commercial
models, such as GPT-3.5 and GPT-4. Overall, we collected
and implemented as many as 12 representative uncertainty
estimation methods that were originally designed for general
DNNs and successfully adapted them to the contexts of LLM
applications. To better capture an in-depth understanding of
the effectiveness of these methods, we conducted large-scale
experiments with as many as twelve LLMs on both NLP (i.e.,
question answering, text summarization, machine translation)
and software programming (i.e., code generation) tasks to ana-
lyze the correlation between uncertainty estimation results and
LLMs performance. The models comprise three from MetaAI,
four from OpenAI, one from Google, one from Microsoft, one
from Alibaba, one from DeepSeek, and one from BigCode.
We also evaluated five older LLMs (e.g., GPT-2, LLaMA,
Codegen, Incoder, and Santacoder), with the corresponding
results available on our website. In total, we have evaluated
17 LLMs The overall workflow of our work is shown in Fig. 2.
In particular, we investigate the following research questions:
• RQ1: To what extent can the uncertainty estimation tech-

niques help identify potential risks of LLMs in NLP tasks?
• RQ2: What limitations do the uncertainty estimation meth-

ods encounter when applied to LLMs in the context of NLP
tasks?

• RQ3: To what extent can the uncertainty estimation meth-
ods assist in identifying potential risks of LLMs for code
generation?

• RQ4: What potential limitation do the uncertainty estima-
tion methods face when being applied to LLMs for code
generation?
Our findings validate that uncertainty measurement can,

to an extent, be helpful in detecting erroneous responses in
general NLP tasks. Additionally, it has also shown to be
promising as an indicator for pinpointing faulty programs
produced by LLMs. Even though, these methods might fall
short in detecting nuanced errors made by high-performance
commercial models. They seem better suited for filtering out

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 2024 3

more blatant mistakes. Based on the results, we further discuss
the insights from our study and highlight a few potential
research directions of leveraging uncertainty estimation to
enhance the trustworthiness of LLMs for real-world applica-
tions across domains. First, research efforts are needed with
novel uncertainty estimation techniques exclusively for LLMs
to better fit the corresponding diverse task-handling ability.
Second, we observe that different LLMs can sometimes dis-
play markedly distinct uncertain behaviors. Consequently, even
though these methods are inherently model-agnostic, stake-
holders may need to undertake model-specific optimizations
to achieve enhanced performance. Furthermore, we observe
that the prompt template used in the reinforcement learning
from human feedback (RLHF [30]) could potentially impact
the accuracy of uncertainty estimation.

The contributions of this paper are summarized as follows:
• We collected and implemented twelve different uncertainty

estimation methods that are successfully adapted to enable
the analysis of LLM, which are also applicable to both
open-source and closed-source LLM models across different
downstream tasks in the grey-box setting.

• We conducted a large-scale evaluation with nine LLMs on
six tasks from four different domains.

• We provided an in-depth analysis of the challenges in
existing uncertainty methods for LLMs and distilled a set
of implications and future opportunities toward reliable and
trustworthy LLMs.

• Our toolkit, encompassing the dataset, LLM inference, and
uncertainty measurement protocols, will be made available
for future research endeavors.

The Contributions to the Software Engineering Field.
LLMs have revolutionized various aspects of software engi-
neering [31], [32], including but not limited to automated
code generation [33], [2], [34], [35], software testing [36],
[37], [38], [39], debugging [40], program repair [41], [42],
and document generation [43]. While LLMs can serve as a
critical core for many new-era AI-enabled intelligent systems
in the software engineering domain, their black-box nature and
inherent uncertainties pose challenges for them to be applied in
the real world in a transparent, reliable, safe, and secure way.
It is thus urgent to investigate and explore effective quality
assurance methods. Measuring uncertainty and taking it as an
indicator of AI models’ reliability has been studied extensively
in the SE community [44], [45], [46]. While promising, most
of them focus on classification tasks with relatively simple
neural architectures. On the contrary, we initialize a very early
stage study on autoregressive, large-scale language models
and perform various uncertainty measurements across a wide
spectrum of tasks.

We further provide more supplementary results and details
as well as the source code to reproduce our study at our
website: https://sites.google.com/view/llm-uncertainty.

II. BACKGROUND AND RELATED WORK

A. Large Language Models

In general, a language model models sequences of words
as a probability distribution, which can be further used to

generate coherent and contextually relevant text via condi-
tioning based on a given prompt. Representative traditional
language models include HMM (hidden Markov model) [48],
n-gram [49], and RNN (recurrent neural networks) [50].
Recently, a specific type of neural network architecture, i.e.,
Transformer [51], has achieved attractive performance on
language modelling. Large language models (LLMs) now
typically refer to those Transformer-based language models
pre-trained with large-scale text corpus and billions of pa-
rameters. LLMs have also achieved promising performance
in many downstream tasks, e.g., text classification [52], text
summarization [53], and machine translation [54].

Based on different Transformer architectures and pre-
training tasks, LLMs largely fall into three categories: encoder-
only, encoder-decoder, and decoder-only. Encoder-only LLMs
also refer to masked language models (MLM), which are pre-
trained through masking a certain portion of tokens (e.g., 15%)
in a sequence. The training objective is to predict those masked
tokens correctly. Representative encoder-only LLMs include
BERT [55], RoBERTa [56], GraphCodeBERT [57], etc. Dif-
ferent from encode-only LLMs, encoder-decoder LLMs, such
as BART [58], CodeT5 [59], are pre-trained through masked
span prediction (MSP). Encoder-decoder LLMs first learn
a representation from input prompts before decoding into
another sequence. They are thus usually trained for sequence-
to-sequence purposes. Lately, decoder-only LLMs have be-
come the mainstream of LLMs research due to their training
efficiency and scalability for large-scale datasets and com-
plex model architectures (i.e., billions of model parameters).
Decoder-only LLMs are autoregressive models. Their training
objective is to predict the next token given all previous (left-
only) tokens. GPT-based (generative pre-trained transformers)
models (e.g., GPT2 [60], GPT3 [47], LLaMA [5] and LlaMA-
2 [6]) all belong to this category. In this work, we mainly focus
on decoder-only LLMs since they have SOTA performance.
We further detail subject LLMs in our study in Sec. IV-A.

Though LLMs are pre-trained without specific tasks in
mind, they can often be used for downstream tasks in two
ways, i.e., through (1) prompting and (2) fine-tuning. Prompt-
ing refers to the process of in-context learning that “teaches”
an LLM to solve a specific task by injecting certain knowl-
edge and instructions into the input prompts. Different from
prompting, fine-tuning is the process of updating an LLM’s
neural network weights through a supervised learning strategy
for certain tasks (e.g., text classification). Recently, decoder-
only LLMs have also been used with reinforcement learning
from human feedback (RLHF) to improve their performance
in understanding complex input prompts and following human
instructions. As a result, ChatGPT (GPT3.5 with RLHF) [3]
has shown superior performance in solving various complex
tasks (e.g., program synthesizes [61], program repair [62]) by
only following the user’s instructions and feedback through
a dialogue. In our study, we mainly consider LLMs through
prompting (that is widely used in practice) and focus on how
to estimate an LLM’s uncertainty in a “black-box” way (i.e.,
only accessing the model’s prediction output probabilities). We
introduce our experiment settings in Sec. IV-B.

https://sites.google.com/view/llm-uncertainty

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 2024 4

How long did the
Roman Empire last?

Prompt

lasted for over 500 years…

lasted

was

last

sp

continued

for

was

from

over

until

over

more

about

around

centuries

500

1

two

a

five

years

Years

years

year

AD

Method : Single Inference

Max Prob. Avg Prob.

Max Entropy. Avg Entropy.

The Roman Empire lasted for over three thousand years
It is difficult to exactly answer this question, as…
The Roman Empire lasted for around 1000 years
…

Method : Sample-based VR VRO

The Roman Empire lasted for more than 500 years
The Roman Empire lasted for about 500 years
The Roman Empire lasted for centuries
…

Method : Perturbation

Max VR Max VRO

MaxDiff VR MaxDiff VRO

Min VR Min VRO

LLM

Token’s Probability
Distribution

Stochastic Inference

Critical Token Perturbation

Question Answering (A)

(B)

(C)

Fig. 3: A running example of how different uncertainty estimation methods work for a QA problem with GPT3 [47].

B. Risk Assessment for ML Models

Machine learning (ML) models, especially deep learning
ones, are known to be notoriously hard to interpret due to their
complexity and opacity. Using ML models without appropriate
risk assessment could potentially lead to particular concerns
and threats regarding trustworthiness, e.g., safety [63], se-
curity [64], and ethics [65]. So far, some risk assessment
techniques for general machine learning models have been
proposed to reduce the impacts of these concerns [66], [67],
[28], [68], [69]. Among them, there are two representative
categories of risk assessment techniques: (1) data distribution
analysis and (2) uncertainty estimation.

The data-driven nature of ML models requires developers to
take data into account, especially when test data could be much
more different compared with the training data in terms of their
distribution. Data distribution analysis, including detecting
distribution shift [67] and out-of-distribution samples [70], is
proposed to identify such differences and avoid potential risks
on unseen data. However, data distribution analysis usually
requires access to training data, which is often not feasible
for LLMs trained on either huge data corpus or private data
corpus. Therefore, in this work, we propose to focus on
uncertainty estimation.

In general, uncertainty estimation aims to measure an ML
model’s confidence level of a certain prediction. There are
two main types of uncertainty in an ML model’s predic-
tions: aleatoric uncertainty and epistemic uncertainty [71].
Aleatoric uncertainty refers to the uncertainty that arises from
observations (e.g., sensor noises in an ML model for au-
tonomous driving). By contrast, epistemic uncertainty accounts
for uncertainty in an ML model’s parameters. Insufficient
knowledge of an ML model (e.g., lack of a specific type of
training data) usually leads to high epistemic uncertainty. In
this paper, we mainly discuss estimating epistemic uncertainty
for LLMs. Uncertainty estimation roughly falls into four
categories [72]: (1) single deterministic methods [73], (2) en-
semble methods [74], (3) Bayesian methods [75], and (4) test-
time augmentation methods [76]. Single deterministic methods
calculate prediction uncertainty based on one forward pass
within a deterministic ML model. Ensemble methods estimate
uncertainty based on a set of different ML models’ output.

By contrast, Bayesian methods only leverage the inherent
stochasticity of an ML model (e.g., dropout layer in deep
neural networks [77]). Test-time augmentation methods are
model-agnostic, which augment the input data at test-time to
measure a model’s prediction uncertainty [78]. Since we focus
on the risk assessment for one standalone LLM, ensemble
methods are excluded from our study. We detail the uncertainty
estimation methods used in this work in Sec. III.

In addition to the aforementioned general risk assessment
techniques, there are also a few works specified for risk
assessment of LLMs [79], [80], [81], [82], [83], [84], [29].
The most related works are those proposed for uncertainty
estimation of LLMs [82], [83], [84], [29]. Xiao et al. leverage
ensemble methods to measure the natural language generation
model’s uncertainty and detect potential hallucinations [82].
Similarly, Malinin et al. propose a unified uncertainty esti-
mation method for autoregressive structured prediction tasks
based on ensemble methods [83]. To overcome the challenge
of capturing “semantic equivalence” in natural language, Kuhn
et al. propose semantic entropy that incorporates linguistic
invariances created by shared meanings [84]. Recently, Man-
akul et al. propose SelfCheckGPT, a black-Box hallucination
detection method based on token-level prediction likelihood
and entropy [29]. In light of the limitations of these works,
our work is the first work that is not limited to specific
natural language or tasks by covering twelve uncertainty
estimation methods. Furthermore, our study investigates the
role of uncertainty estimation with extensive experiments with
nine LLMs and six tasks, providing insights and evidence for
its effectiveness as the risk assessment technique for LLMs.

III. UNCERTAINTY ESTIMATION FOR LLMS

In this section, we first discuss the problem scenario in
our study, including the corresponding assumptions. Then, we
introduce our twelve uncertainty estimation techniques (three
categories) based on the number of inferences required.

A. Problem Scenario

Given an input prompt X = [x1, x2, . . . , xn] (xi denotes
ith input token), an LLM f with pre-trained weights w
generates another sequence Y = [y1, y2, . . . , ym] (yj denotes

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 2024 5

Answer: Deep Blue Sea is a 1999 American science
fiction horror film

film

Probability Distribution
over The Vocabulary

…

Fig. 4: The available information we can get from the LLM in
our setting. This is an illustration of how LLAMA-7B answers
the question “when did the movie deep blue sea come out?”.

jth generated token) through a decoding process: yj =
f ([X, y1, y2, . . . , yj−1]|w)

An uncertainty estimation method g is to calculate a score
u regarding the uncertainty of Y .

Though an LLM can be regarded as an ML model, it is
limited by the inherent properties of some existing uncertainty
estimation methods. Following we discuss the unique charac-
teristics of LLMs and challenges in uncertainty estimation for
LLMs compared with other ML models.

• Complexity. The state-of-the-art (SOTA) LLMs are usually
pre-trained with billions of parameters (e.g., GPT-3 [47]
model has 96 layers with 6.7 billion parameters). Therefore,
“white-box” analysis for interpreting LLMs (e.g., inspecting
neuron activation [85], inspecting attention values [86], [87])
that requires both significant manual and computational
efforts is not feasible.

• Opacity. There is also a lack of opacity in SOTA LLMs.
First, the SOTA LLMs are usually trained with large-
scale text corpus, where such data can be either publicly
available or from private sources. Therefore, risk assessment
techniques that require access to training data (e.g., OOD
detection) can not be used in our context. Additionally, some
of the SOTA LLMs are potentially proprietary assets for a
company (e.g., GPT-3 [47]), where one can only access the
inference results through provided APIs.

• Task diversity. Though the usage of LLMs can be de-
scribed in a general decoding form , tasks that LLMs can
solve are of greater diversity. Notably, LLMs can be used
for user-defined tasks through prompting/few-shot learning
(Sec. II-A). Therefore, uncertainty estimation methods that
are proposed for a specific narrow domain (e.g., text clas-
sification) are hard to be used as a general risk assessment
technique for LLMs.

With these characteristics and challenges in mind, we show
the information that we can get from the majority of both
open-source and closed-source LLMs in Fig. 3 (A) and explore
possible existing solutions in this grey box setting for a
general usage risk assessment. We summarize the necessary
information needed in this study in Fig. 4. In most cases,
we are only able to obtain the output tokens as well as the
probability distribution over the vocabulary for each token.
Specifically, for closed-source models such as GPT-3 [47] and
GPT-3.5 [88], one is only able to obtain the top-k probabilities
(i.e., k possible tokens with the highest probabilities) for each

predicted token. Formally, we can formulate the uncertainty
estimation in our study as

u = g(f(·), X, Y, P), (1)

where P is either the probability distribution or top-k proba-
bilities for each token.

Finally, we select twelve uncertainty estimation methods
covering single deterministic methods, Bayesian methods, and
test-time augmentation methods (see discussion in Sec. II-B).
We categorize our uncertainty estimation methods based on the
number of inferences required and detail them in the following.

B. Single-inference Uncertainty Estimation

Single-inference uncertainty estimation methods can be seen
as single deterministic methods in Sec. II-B. These methods
usually calculate an ML model’s confidence based on the prob-
ability distribution of the prediction [89], [90]. In particular,
such methods are usually used for classification tasks. Though
LLMs can be used in various different tasks, the generation
of each token can still refer to a classification problem (i.e.,
choose one token from the entire vocabulary). To aggregate the
uncertainty information obtained at the token level, Manakul et
al. [29] propose four different metrics to aggregate token-level
uncertainty into sentence level.

In particular, a sentence-level uncertainty score can be
obtained by taking either the maximum or average of the
likelihood − log p in a sentence:

Max(− log p)i = max
j

(− log pij), (2)

Avg(− log p)i = − 1

J

∑
j

log pij , (3)

where pij is the probability of a token at position j of a
sentence i. Additionally, one can also replace the likelihood
− log p with the entropy H:

Max(H)i = max
j

[Hij], (4)

Avg(H)i =
1

J

∑
j

Hij , (5)

where Hij is the entropy of this token’s probability distribution
over the vocabulary.

After obtaining sentence-level uncertainty estimation, one
can further calculate the passage-level uncertainty score by
taking the average over all sentence-level uncertainty scores.
In this study, we use the metrics discussed above as the single-
inference uncertainty estimation methods and denote them
as Max Prob, Average Prob, Max Ent and Average Ent.

C. Multi-inference Uncertainty Estimation

Multi-inference uncertainty estimation methods leverage
the stochastic in either a model’s parameters (e.g., Bayesian
methods) or data (e.g., test-time data augmentation methods)
to collect a set of non-deterministic predictions. A model’s
prediction uncertainty is then estimated as the divergence
among those predictions.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 2024 6

1) Metrics: Two metrics were widely used to measure such
divergence: (1) variation ratio (VR) and (2) variation ratio for
original prediction (VRO) [77], [91], [44]. Originally, both
metrics are defined for a classification problem. Wang et
al. [92] extend the definitions of VR/VRO and show that
they are still effective in tasks other than classification. We
introduce these two metrics in the following:

V R = 1−
∑T

i=1 w ∗
∑j=T

j=1,j ̸=i
(1−dist(pi,pj))

T−1

T
, (6)

V RO = 1−
∑T

i=1(1− dist(pi, pLM))

T
, (7)

where T is the number of inferences, dist(·) denotes the
distance function between two outputs. pi and pj are the
inference result at ith and jth inference. pLM

is the prediction
result from the original model M . w denotes a weight matrix.

I love machine learning.

I love large language models.

I love machine learning.

I love large language models.{
Original Prediction

Multiple-Inferences

1-BLEU score: 0.31

1-BLEU score: 0

Fig. 5: An example of multiple inferences with LLMs.

We now use an example to demonstrate the calculation of
VR/VRO in Fig. 5. Suppose we have three different generations
given stochasticity in either model or data. (1 − BLEU)
score [93] is used as dist(·) to measure the differences
between two sentences 1. Suppose we use identical weights
for equation 6, then:

V R = 1−
0.69+1

2
+ 0.69+0.69

2
+ 0.69+1

2

3
≈ 0.21. (8)

Similarly, VRO is

V RO = 1− 0.69 + 0.69 + 1

3
≈ 0.21. (9)

2) Stochastic inference: To enable the stochasticity of an
ML model, one popular way is to execute it with the dropout
layer(s) enabled at test-time [77]. However, this is not feasible
given that we focus on “black-box” analysis. We introduce two
different ways to enable stochasticity in our study: (1) sample-
based method (Bayesian methods) and (2) perturbation-
based method (test-time augmentation methods).

Sample-based method. Randomness exists in LLMs’ genera-
tion process. Specifically, by controlling the parameter temper-
ature (t), an LLM’s generation can be either deterministic or
non-deterministic. When t is 0, an LLM will always choose the
token with the largest probability (i.e., greedy decoding). Thus
the generation will be deterministic. When t > 0, an LLM will
randomly choose a token as long as its probability is larger
than a threshold. A higher t will lead to a larger randomness in
an LLM’s generation. In this study, we set t > 0 to enable an
LLM’s stochasticity and generate non-deterministic outputs.
We refer to this method as sample-based method. We denote

1A higher (1−BLEU) indicates a lower similarity between two texts.

the usages of two different metrics as Sample VR and Sample
VRO. We detail the choices of t in Sec. IV-D.
Perturbation-based method. An LLM’s stochasticity could
also be enabled when changing the input prompt or per-
turbing a generated token. This also refers to the test-time
augmentation methods. Intuitively, along the chain of the token
generation, any perturbation of a generated token can affect
the proceeding tokens’ generation , and possibly result in
two semantically different texts. We refer to an example in
Fig. 3 (C), where LLM answers the question, “How long
did the Roman Empire last?” Changing the word over in the
generation results could yield a completely different result,
“lasted for centuries.” This phenomenon shows an intriguing
property of LLMs: their stochastic nature along the prediction
chain with respect to perturbation.

Therefore, in this study, we propose an adaptive method
to perturb “critical” token(s) during an LLM’s generation
process. Prior work has shown that tokens with high entropy
in a sentence usually convey more information from the infor-
mation theory perspective [94]. Consequently, perturbations at
such points could possibly lead to a more pronounced change
compared with others. To explore the effectiveness of using
such perturbation for measuring uncertainty, we define three
types of interest points to perturb: (1) the point with the highest
entropy; (2) the point with the lowest entropy; (3) the point
that gains the maximum entropy from the previous token in
a response. In our study, we select the token that matches
one of these three types of points and replace it with k other
tokens with the highest probabilities. We name this method
perturbation-based method and denote six different variants
as: Max VR, Max VRO, Min VR, Min VRO, MaxDiff VR,
and MaxDiff VRO. We justify the choice of k in Sec. IV-D.

IV. STUDY DESIGN

In this section, we introduce our study design and method-
ology to answer our research questions in Sec. I.

A. Subject LLMs

In order to provide a thorough evaluation of the effective-
ness of uncertainty measurement as the risk assessment for
LLMs in both natural language and domain-specific (i.e., code-
generation) problems, we have chosen a broad spectrum of
representative models. We selected these models considering
their availability, diversity, and computational requirements.
Four open-source LLMs for NLP tasks, four closed-source
general LLMs, and four LLMs specified for code generation
are selected. We present our selected LLMs in Table I and Ta-
ble II. We additionally performed experiments on older LLMs
including GPT-2-XL [60], LLaMA-7B [5], Incoder [33], San-
taCoder [34] and CodeGen [35]. Due to space limits, we left
related results on our website.

B. Tasks

To comprehensively understand the effectiveness of selected
uncertainty estimation methods, we selected a set of diverse
and challenging tasks as a benchmark (Table. III). Specifically,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 2024 7

TABLE I: Subject open-source LLMs in our study.

LLMs LLaMA2 [6] LLaMA3 [95] Gemma2 [96] Phi3 [97] CodeQwen1.5 [98] DeepSeek Coder [99] Starcoder 2 [100] Code Llama [2]

Model Size 6.7B 8B 9B 7B 7B 6.7B 7B 6.7B
Training Data 2T tokens 15T tokens 8T tokens 4.8T tokens 2.4T + 90B 2T 3.5T 2T + 620B
Domain Text Text Text Text Code Code Code Code
Provider MetaAI MetaAI Google Microsoft Alibaba DeepSeek BigCode MetaAI

TABLE II: Subject closed-source LLMs in our study.

LLMs GPT-3 [47] GPT-3.5 [88] GPT4o [101] GPT4o mini [102]

Model Size 6.7B 175B Unknown Unknown
Training Data 570 GB Unknown Unknown Unknown
Domain Text General Multimodal General Multimodal General

Provider OpenAI OpenAI OpenAI OpenAI

TABLE III: The collected NLP and programming tasks.

Dataset Task Domain Size dist(·) metrics
in VR/VRO

Eli5-Category Question Answering 5,411 F1 score [103]
Wiki-QA Question Answering 243 F1 score [103]
CNN/Daily Mail Text Summarization 11,490 ROUGE-L [104]
WMT 2014 Machine Translation 3,003 BLEU [93]
MBPP Code Generation 500 CodeBLEU [105]
HumanEval Code Generation 164 CodeBLEU [105]

our evaluation covers four NLP tasks from three different do-
mains (i.e., question answering, text summarization, and ma-
chine translation). Furthermore, our evaluation also includes
two different code-generation tasks. Below, we introduce the
tasks of different domains.
Question Answering (QA) requires an LLM with the ca-
pability of understanding users’ intentions, extracting learned
knowledge, and organizing responses. In this study, we se-
lected two different benchmarks for QA: Eli5-category [106]
and Wiki-QA [103]. Eli5-category is a collection of 5,411 ques-
tions and answers gathered by and obtained from pushshift.io.
Wiki-QA is a collection of questions extracted from Bing query
logs with Wikipedia summaries as answers. We selected 243
instances after the de-duplication and removal of questions
without answers.
Text Summarization aims to condense a long text into a con-
cise short summary. Different from QA, text summarization
focuses on benchmarking an LLM’s capabilities of extracting
critical information from a long paragraph of text. We use
the CNN/Daily Mail dataset [107] as the benchmark for text
summarization. It comprises 11,490 news articles from CNN
and the Daily Mail, with summaries obtained through the
concatenation of highlighted sentences as composed by the
original authors. Note that during the evaluation, we add a
prompt TL;DR after the input text to enable an LLM’s in-
context learning ability for summarization [60].
Machine Translation is another fundamental task to bench-
mark language models. In this study, we use the WMT
2014 dataset [108], including 3,003 pairs of French-English
transcripts, to evaluate LLMs. Similar to text summarization,
We used the prompt template from the GPT-3 paper [47],
where a random example translation is presented in the input
for in-context learning.

Code Generation requires an LLM to understand both natural
language (e.g., task description) and programming languages
(e.g., formal structures and precise syntax). We chose it as
a representative task for evaluating LLMs’ coding abilities
because (1) it is a comprehensive task that challenges the
models’ advanced understanding and reasoning capabilities,
(2) it has been selected as one of the major tasks to benchmark
LLMs’ code abilities [2], [98], [99], [100], and (3) it can
be automated and objectively evaluated through test cases.
We select two datasets as benchmarks for code generation:
HumanEval [109] and MBPP [110]. HumanEval consists of
164 programming problems with manually written test cases
released by OpenAI. MBPP includes 1,000 crowd-sourced
Python programming problems with entry-level difficulties.

C. Evaluation Metrics

NLP Tasks. We use semantic distance to measure the per-
formance of LLMs’ generation for NLP tasks. Specifically,
we first embed the text using sentence-transformer [111] and
compute the cosine distance of the embeddings. A higher co-
sine distance value indicates a greater level of similarity. This
metric can be generalized to different NLP tasks regardless of
the length and form of generation. Note that while there are
some other metrics specialized for each NLP task, which relies
on string-matching (e.g., F1 score for text summarization), we
argue two major shortcomings exist when using such metrics.
First, string-matching might not accurately capture the diver-
gence between the model’s output and the ground truth (e.g.,
when the output and ground truth are semantically equivalent
while lexically different). Additionally, LLMs without fine-
tuning might generate responses in a free-form manner that are
often longer than the ground truth in, e.g., text summarization
and question answering. In this case, even if an LLM answers
correctly, metrics based on string matching could still mis-
indicate its performance due to the length differences.
Code Generation Task. Different from NLP tasks, it is
relatively easy to assess the quality of generated code. We
introduce a quality score Q given by Q = (Qsyntax +
Qsemantics)/2. Qsyntax = 1 if the generated code is syn-
tactically correct (i.e., it can be executed by the interpreter).
Meanwhile, Qsemantics is the proportion of test cases the
generated code passes.

D. Experiment Settings

Uncertainty measurement. We investigate twelve uncertainty
estimation methods in our experiments: four single-inference
methods, two sample-based methods, and six perturbation-
based methods. We set the number of inferences T to 5 for
both sample-based and perturbation-based methods. This is

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 2024 8

for a fair comparison between these two methods since closed-
source LLMs (i.e., GPT-3, GPT-3.5) only provide access to
top-5 tokens for each token’s generation. Therefore, only
5 inferences can be obtained with the perturbation-based
method on closed-source LLMs. For temperature t, we follow
the previous work and set t to 0.7 when enabling on an LLMs’
stochasticity [112], [113].

For distance metric in VR and VRO (i.e., dist(·) in Eq. 6&7),
we consider both (1) general metrics based on embeddings’
cosine distance and (2) task-specific metrics. For general
metrics, we use all-mpnet-base-v2 [114] for natural language
tasks and codebert-base [57] for code data. For task-specific
metrics, we consider the following choices in Table III.

Experiment setups. Due to the API constraints, an inference
of closed-source LLMs (i.e., GPT3 and GPT3.5) could take
up to 20 seconds. Consequently, evaluating an LLM on
CNN/Daily Mail dataset with 11,490 instances would require
nearly 575 hours. Therefore, we randomly sample each NLP
task’s dataset with 100 instances when evaluating closed-
source LLMs. We further sample 40 out of 164 and 125 out
of 500 instances for HumanEval and MBPP, respectively. For
closed-source models, we evaluated all instances.

Hardware and software dependencies. To conduct our large-
scale experiments, we utilize a server with AMD 3955WX
CPU (3.9GHz), 256GB RAM, and four NVIDIA A4000 GPUs
(16GB VRAM of each). The evaluation of open-source LLMs
shown in the main text takes more than 2560 GPU hours, and
the results on the website take around 864 GPU hours.

V. RESULTS

A. RQ1: Uncertainty Estimation for NLP Tasks

To answer this research question, we evaluated eight general
LLMs. We present the results of Pearson correlation coef-
ficients between uncertainty scores and LLMs’ performance
in Table IV. Such correlation is an indicator of whether the
uncertainty estimation can predict LLMs’ performance and
further perform the risk assessment. The higher the absolute
value of the coefficient, the stronger the correlation. We
investigate the results of NLP tasks from three perspectives:

Uncertainty Measurement Techniques. As can be observed
from Table IV, uncertainties estimated via sample-based meth-
ods generally yield the highest correlation to an LLM’s per-
formance.

Specifically, sample-based methods perform the best,
achieving the highest correlation in 21 out of 32 scenarios
across eight models and four tasks. Among these, Sample VRO
leads in 12 scenarios and Sample VR in 9. In contrast, single-
inference methods only achieve one top position. This indi-
cates that relying on single-inference uncertainty estimation
might be unreliable in practical applications without a more
refined strategy.

However, even for the most promising sample-based meth-
ods, the majority correlation is below -0.6 (18 out of 21 cases)
and their performance can still further space for enhancement
(e.g., -1.00 correlation), calling for the design of more ad-
vanced techniques.

Finding 1: Sample-based VRO achieves the best per-
formance for eight different LLMs on NLP tasks in
most cases, surpassing single-inference methods by a
large margin. While its potential is evident, further en-
hancement with advanced technique design is needed
and promising for industrial deployment.

Perturbation-based methods demonstrate moderate effec-
tiveness, exceeding single-inference metrics in a substantial
proportion of tasks. It reaches the highest correlation in 10 out
of 31 scenarios. For the selection of perturbation points, the
maximum entropy point is usually better than the other two,
counting for 50% of the best cases. Surprisingly, the minimum
entropy point can sometimes work well for Llama2. We ex-
plored this issue further and found that Llama2 exhibits greater
certainty compared to Llama1 and Llama3. For Llama2, we
observed that it is substantially more “certain” than Llama-1.
The 75th percentile of the entropy of all tokens generated by
Llama2 is nearly 0, with a mean value of 0.18. Conversely,
Llama-1 has a value of 2.62 at the 75th percentile, with a mean
of 1.52. Llama-3 has a value of 0.391 at the 75th percentile,
with a mean of 0.211. As such, the entropy selection strategy
might not work well on Llama2.

Another interesting observation is that some models (e.g.,
LLaMA2, LlaMA3, Gemma2, Phi3, and also older mod-
els such as GPT-2 and LLaMA demonstrated on our web-
site) exhibit high positive Pearson correlation coefficients of
perturbation-based methods. The results indicate that, a higher
uncertainty may even yield a better performance in such cases.
Upon several case studies, we find that this observation could
be attributed to the long input in the text summarization
dataset. These LLMs may lose focus on the input context,
leading to a lack of understanding of the instructions for
summarization. Instead, they mechanically continue the text
immediately after the input, producing similar responses de-
spite the stochasticity introduced by perturbations. This results
in a low uncertainty score. On the contrary, if an LLM
understands the task description at the end of the prompt,
it will respond to the perturbation more severely, causing a
higher uncertainty.

Finding 2: Perturbation-based methods are more in-
clined to produce model and task-specific outcomes.
Stakeholders might need to perform model-specific
optimization if possible.

Influence of Distance Functions. We also find that task-
specific distance does not provide better results compared with
cosine distance between embeddings in both sample-based
and perturbation-based methods. On average, using cosine
distance achieves an increase of 0.034 for perturbation-based
methods and an increase of 0.137 for sample-based methods
across different tasks and LLMs.

Finding 3: The cosine distance function yields a better
performance on NLP tasks when leveraging stochas-
ticity to estimate an LLM’s prediction uncertainty.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 2024 9

TABLE IV: Pearson correlation coefficients between uncertainty scores and LLMs’ performance on four NLP tasks. The
results of VR/VRO are presented as “cosine distance-based (task-specific distance-based).” Highest correlations from different
categories are ranked and highlighted as top-1 , top-2 , and top-3 .

Dataset LLM Single-inference Method Sample-based Method

Max Prob Average Prob Max Ent Average Ent Sample VR Sample VRO

CNN/Daily Mail

LLaMA2 -0.096 -0.109 -0.139 -0.110 -0.370(-0.260) -0.534(-0.294)
LLaMA3 0.109 -0.342 -0.002 -0.433 -0.643(-0.510) -0.590(-0.307)
Gemma2 -0.331 -0.336 -0.211 -0.317 -0.272(-0.025) -0.486(-0.204)
Phi3 -0.535 -0.620 -0.606 -0.648 -0.709(-0.651) -0.739(-0.648)
GPT3 -0.231 -0.202 -0.145 -0.170 -0.229(-0.100) -0.394(-0.244)
GPT3.5 -0.119 -0.119 -0.036 -0.106 -0.223(-0.131) -0.220(-0.158)
GPT4o mini -0.075 -0.196 -0.021 -0.211 -0.199(-0.187) -0.177(-0.164)
GPT4o -0.334 -0.150 -0.196 -0.126 -0.383(-0.338) -0.324(-0.290)
LLaMA2 -0.000 -0.008 0.008 -0.018 -0.196(-0.006) -0.300(0.024)
LLaMA3 -0.007 -0.046 -0.043 -0.067 -0.173(-0.051) -0.177(-0.064)
Gemma2 0.212 0.195 0.168 0.201 0.001(-0.088) -0.099(-0.106)
Phi3 -0.007 -0.008 -0.044 -0.027 -0.002(0.088) -0.140(-0.013)
GPT3 -0.054 -0.207 -0.016 -0.172 -0.236(-0.084) -0.382(-0.140)
GPT3.5 -0.037 -0.240 -0.084 -0.289 -0.168(-0.021) -0.223(-0.046)
GPT4o mini -0.200 -0.283 -0.099 -0.303 -0.116(-0.162) -0.127(-0.064)

Eli5-Category

GPT4o 0.019 -0.179 0.007 -0.207 -0.224(-0.146) -0.152(-0.118)

Wiki-QA

LLaMA2 -0.181 -0.193 -0.166 -0.140 -0.281(-0.206) -0.374(-0.184)
LLaMA3 0.017 0.091 -0.011 0.093 -0.227(-0.060) -0.294(-0.050)
Gemma2 0.226 0.265 0.259 0.300 -0.031(0.213) -0.138(0.212)
Phi3 0.038 -0.101 -0.004 -0.101 -0.395(-0.045) -0.370(0.030)
GPT3 -0.112 -0.192 0.017 -0.107 -0.326(-0.061) -0.376(-0.139)
GPT3.5 -0.051 -0.107 -0.065 -0.105 -0.401(-0.085) -0.425(-0.079)
GPT4o mini 0.032 0.031 -0.018 0.011 -0.223(-0.051) -0.124(0.010)
GPT4o 0.080 -0.052 0.006 -0.083 -0.222(-0.074) -0.128(-0.054)
LLaMA2 0.157 -0.000 0.185 -0.015 0.068(0.009) 0.125(0.163)
LLaMA3 -0.113 -0.001 -0.139 -0.020 0.006(0.105) -0.071(-0.001)
Gemma2 0.342 0.153 0.309 0.115 -0.510(-0.410) -0.769(-0.485)
Phi3 -0.024 -0.126 -0.071 -0.09 -0.393(-0.159) -0.392(-0.164)
GPT3 -0.046 -0.162 -0.039 -0.176 -0.250(-0.254) -0.251(-0.339)
GPT3.5 0.089 -0.158 0.050 -0.175 -0.244(-0.065) -0.233(-0.017)
GPT4o mini -0.223 -0.136 -0.138 -0.122 -0.403(-0.056) -0.394(-0.095))

WMT 2014

GPT4o -0.054 -0.273 -0.06 -0.265 -0.558(-0.209) -0.539(-0.137)

Dataset LLM Perturbation-based

Max VR Max VRO Min VR Min VRO MaxDiff VR MaxDiff VRO

CNN/Daily Mail

LLaMA2 -0.204(-0.161) -0.388(-0.154) -0.075(-0.055) -0.418(-0.226) -0.194(-0.152) -0.378(-0.143)
LLaMA3 0.027(0.005) 0.123(0.231) 0.472(0.385) 0.181(0.204) 0.076(0.043) 0.167(0.256)
Gemma2 0.405(0.488) 0.308(0.435) 0.296(0.304) 0.378(0.422) 0.443(0.474) 0.404(0.461)
Phi3 0.447(0.555) 0.579(0.669) 0.343(0.446) 0.511(0.598) 0.437(0.551) 0.570(0.659)
GPT3 -0.096(-0.084) -0.233(-0.209) -0.001(-0.049) 0.034(0.041) -0.119(-0.121) -0.228(-0.182)
GPT3.5 0.064(-0.086) -0.024(-0.087) -0.116(-0.176) -0.068(-0.177) -0.042(-0.138) 0.072(0.021)
GPT4o mini -0.227(-0.288) 0.065(0.058) 0.085(0.020) 0.058(0.048) -0.118(-0.240) 0.138(0.111)
GPT4o -0.110(-0.119) -0.086(-0.048) 0.064(0.041) 0.060(0.049) -0.092(-0.098) -0.043(0.011)
LLaMA2 -0.079(0.008) -0.203(-0.017) -0.086(0.002) -0.218(0.026) -0.086(0.018) -0.210(-0.011)
LLaMA3 -0.106(-0.056) -0.159(-0.032) -0.062(-0.070) -0.104(-0.091) -0.093(-0.055) -0.159(-0.032)
Gemma2 -0.381(-0.172) -0.462(-0.206) -0.089(-0.004) -0.158(-0.074) -0.398(-0.179) -0.519(-0.212)
Phi3 -0.208(-0.108) -0.231(-0.058) -0.120(-0.070) -0.169(-0.073) -0.235(-0.122) -0.231(-0.102)
GPT3 0.168(0.179) 0.026(0.079) -0.236(-0.246) -0.066(-0.135) 0.140(-0.003) 0.184(0.047)
GPT3.5 0.003(-0.076) 0.065(0.049) -0.087(-0.157) 0.072(0.056) 0.160(0.092) 0.183(0.125)
GPT4o mini -0.109(-0.045) -0.339(-0.053) -0.054(0.002) -0.222(-0.150) -0.131(-0.008) -0.159(0.047)

Eli5-Category

GPT4o 0.115(0.108) -0.017(0.144) -0.158(-0.020) -0.073(0.080) -0.026(-0.036) -0.001(-0.047)

Wiki-QA

LLaMA2 -0.057(0.050) -0.081(0.014) -0.064(-0.001) -0.164(-0.036) -0.077(0.023) -0.111(-0.006)
LLaMA3 -0.043(0.022) -0.037(0.071) -0.118(-0.114) -0.154(-0.147) -0.068(-0.014) -0.032(0.081)
Gemma2 -0.255(0.103) -0.480(-0.034) -0.094(0.301) -0.233(0.163) -0.561(-0.123) -0.634(-0.118)
Phi3 -0.067(-0.001) -0.132(0.002) -0.152(-0.038) -0.238(-0.033) -0.181(-0.118) -0.179(-0.083)
GPT3 -0.064(0.049) -0.204(-0.186) -0.042(0.048) -0.247(-0.146) -0.042(-0.020) -0.095(-0.111)
GPT3.5 0.092(0.065) 0.078(0.056) -0.017(-0.113) -0.030(-0.109) 0.157(0.014) 0.214(0.065)
GPT4o mini -0.263(-0.196) -0.184(-0.116) -0.004(0.053) 0.014(0.008) -0.150(-0.144) -0.103(-0.110)
GPT4o 0.023(-0.048) 0.135(0.075) -0.000(0.027) -0.071(-0.047) -0.060(-0.076) 0.081(0.055)
LLaMA2 -0.022(-0.027)) -0.036(0.058) -0.064(-0.029) -0.190(0.024) -0.026(-0.028) -0.040(0.058)
LLaMA3 0.243(0.369) 0.153(0.257) -0.111(-0.090) -0.335(-0.346) 0.281(0.429) 0.293(0.362)
Gemma2 0.027(0.049) 0.243(0.100) -0.016(0.048) 0.326(0.266) 0.052(0.027) 0.183(0.068)
Phi3 -0.109(-0.102) -0.060(-0.039) -0.064(-0.088) -0.033(-0.040) -0.125(-0.123) -0.052(-0.040)
GPT3 -0.076(0.006) 0.016(0.021) -0.033(0.095) 0.215(0.138) -0.103(0.001) 0.013(0.040)
GPT3.5 -0.277(-0.363) -0.101(-0.081) -0.099(-0.048) -0.007(-0.003) -0.105(-0.201) -0.031(-0.024)
GPT4o mini -0.001(-0.010) -0.116(-0.030) -0.091(-0.058) -0.133(-0.081) -0.043(-0.034) -0.064(-0.015)

WMT 2014

GPT4o -0.003(0.018) 0.116(0.161) -0.058(-0.087) -0.062(-0.069) 0.060(-0.051) 0.102(0.080)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 2024 10

CNN Dailymail Eli5 Category Wiki QA Wmt14
Tasks

0.0
0.2
0.4
0.6
0.8
1.0

Pe
rfo

rm
an

ce
Llama-2
Llama-3

Gemma-2
Phi-3

GPT-3
GPT-3.5

GPT-4o
GPT-4o Mini

Fig. 6: Performance of LLMs on NLP tasks

Influence of Models. Combining LLMs’ performance in Fig-
ure 6 and uncertainty methods’ effectiveness in Table IV, we
can observe that it is challenging for these uncertainty methods
to assess the risks for models that are either exceptionally
good (e.g., GPT4o) or notably poor (e.g., Llama2). This
might be because the current evaluated methods struggle to
discern the nuanced differences attributed to aleatoric un-
certainty [27] (knowledge deficiency). Most of the results
are likely dominated by epistemic uncertainty [27] (inherent
randomness), leading to a decline in detection performance. In
other words, when generated contents are unanimously good
or bad, the computed uncertainty is more likely driven by
inherent randomness rather than variations in the input data.

Another intriguing observation is that single-inference meth-
ods tend to perform better on more advanced models, such
as the closed-source GPT series. This may be due to their
extensive training data, resulting in better-calibrated con-
fidence scores. However, a gap remains between single-
inference methods and other approaches. Bridging this gap
is challenging, as LLM output entropy consists of two com-
ponents [115]: language entropy, which arises from multiple
vocabulary choices that convey similar meanings, and excess
cross-entropy, which reflects model capability. Since single-
inference methods rely on output entropy, separating these
components is difficult. In contrast, multi-inference methods
mitigate this issue by focusing on semantic variability rather
than output entropy alone.

Finding 4: Uncertainty-based risk assessments for
exceptionally good or notably poor LLMs appear
to be limited. The former is especially prevalent in
closed-source commercial models used in real-world
applications. When an LLM’s performance is very
high, analyzing its potential issues can be intrinsically
difficult, calling for more advanced methods that can
work even with limited information.

B. RQ2: Limitations in Uncertainty Estimation for NLP Tasks

In this RQ, we further explore two limitations of evaluated
uncertainty estimation methods.
Influence of prompt. An intriguing anomaly in RQ1 is
Llama2, which underperforms significantly on summarization
and translation, and its uncertainty estimation for all four
tasks is ineffective. This is counter-intuitive. After manually
investigating some randomly chosen samples, we found this
might be because of the input prompt. Using a fine-tuned chat

version of Llama2, we incorporated a system prompt template
shown in the original paper, starting with

You are a helpful, respectful, and
honest assistant ...

However, this prompt template has three downsides. We will
use the WMT-14 translation task as examples: (1) The LLM
will sometimes directly reject to respond, offering something
such as “ I cannot provide a translation for that statement
as it is not factually coherent.” (2) The LLM misinterprets
examples in the in-context prompt, translating the (fixed)
example itself. This leads to duplicate translations and results
in poor translation performance. (3) Many of the responses
will begin with greetings such as “ Thank you for your kind
and respectful instructions! ” Each of these three scenarios can
negatively affect the calculation of multi-inference uncertainty,
as the fine-tuned responses from the LLM, to some extent,
surpass inherent randomness.

To study the prompt influence further, we removed the
system prompt and re-run all the experiments on Llama2. The
results are shown in Table VI. Overall, there’s a significant
increase in all correlations, encompassing the original two
high-performing QA tasks. When comparing the top-1 scores
across the four tasks, the average increase in the absolute
value of correlation coefficients is 0.272. The most notable
improvement is observed in the WMT-14 dataset, where the
correlation shifts from -0.190 to -0.746. Given that RLHF-
based prompt tuning is pivotal for SOTA chat models, such
as open-sourced Llama2 and commercial ChatGPT, it might
be better for future work to take this into consideration when
designing new methods.

Finding 5: Prompts could significantly influence un-
certainty estimation in some cases. Prompt templates
can lead LLMs to exhibit different behaviors, compro-
mising the accuracy of uncertainty estimation.

Relation of uncertainty and inaccuracy. We find that a low
uncertainty does not guarantee that an LLM’s response is
reliable. Specifically, an LLM can generate highly confident
responses while with non-factual information.

A representative example can be observed when Gemma2
is instructed to summarize a CNN news article in which a
triathlon participant narrates her training journey in the first
person.

... I’m looking forward to many more
rides outdoors. I want to say thank
you to the fellowship of fitness that
I’ve been lucky enough to find ... I’m
so grateful that ...

The article contains many first-person narratives, which cause
the model to misinterpret the task and ignore the instruction
to summarize. As a result, it repeated sentences such as “I’m
still not doing as much as xxx as I should
...” In the response, the LLM consistently produced similar
responses, even when perturbation or sampling was introduced
to add stochasticity. Despite the fact that these responses were

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 2024 11

TABLE V: AUC scores for detecting erroneous code generated by LLMs. The results of VR/VRO are presented as “cosine
distance-based (task-specific distance-based).” Highest scores are ranked and highlighted as top-1 , top-2 , and top-3 .

Dataset LLM Single-inference Method Sample-based Method

Max Prob Average Prob Max Ent Average Ent Sample VR Sample VRO

HumanEval

CodeQwen1.5 0.592 0.539 0.578 0.538 0.639(0.617) 0.668(0.647)
DeepSeek Coder 0.735 0.692 0.738 0.676 0.730(0.705) 0.747(0.699)
Starcoder2 0.747 0.629 0.752 0.656 0.693(0.675) 0.748(0.670)
Code Llama 0.744 0.618 0.752 0.601 0.697(0.681) 0.731(0.749)
GPT3.5 0.500 0.590 0.383 0.490 0.630(0.667) 0.607(0.587)
GPT4o mini 0.909 0.760 0.891 0.749 0.657(0.583) 0.737(0.714)
GPT4o 0.583 0.623 0.480 0.543 0.423(0.623) 0.343(0.606)
CodeQwen1.5 0.356 0.363 0.358 0.367 0.555(0.613) 0.593(0.643)
DeepSeek Coder 0.545 0.463 0.527 0.46 0.581(0.618) 0.617(0.621)
Starcoder2 0.567 0.447 0.589 0.439 0.562(0.616) 0.581(0.665)
Code Llama 0.499 0.418 0.483 0.433 0.578(0.668) 0.603(0.705)
GPT3.5 0.582 0.556 0.606 0.560 0.592(0.563) 0.561(0.576)
GPT4o mini 0.579 0.609 0.593 0.628 0.609(0.606) 0.599(0.569)

MBPP

GPT4o 0.629 0.633 0.635 0.667 0.650(0.735) 0.634(0.698)

Dataset LLM Perturbation-based

Max VR Max VRO Min VR Min VRO MaxDiff VR MaxDiff VRO

HumanEval

CodeQwen1.5 0.629(0.611) 0.646(0.609) 0.595(0.592) 0.593(0.571) 0.626(0.627) 0.638(0.595)
DeepSeek Coder 0.607(0.479) 0.664(0.512) 0.589(0.563) 0.574(0.426) 0.604(0.454) 0.661(0.581)
Starcoder2 0.638(0.569) 0.664(0.643) 0.449(0.457) 0.565(0.526) 0.592(0.525) 0.666(0.629)
Code Llama 0.597(0.613) 0.668(0.644) 0.498(0.555) 0.643(0.582) 0.609(0.538) 0.725(0.680)
GPT3.5 0.500(0.503) 0.457(0.560) 0.497(0.503) 0.420(0.607) 0.533(0.533) 0.393(0.477)
GPT4o mini 0.546(0.531) 0.703(0.743) 0.594(0.531) 0.589(0.646) 0.506(0.460) 0.686(0.749)
GPT4o 0.571(0.560) 0.709(0.720) 0.391(0.469) 0.600(0.674) 0.457(0.509) 0.691(0.680)
CodeQwen1.5 0.533(0.532) 0.501(0.553) 0.476(0.478) 0.487(0.520) 0.567(0.553) 0.523(0.558)
DeepSeek Coder 0.620(0.592) 0.561(0.566) 0.456(0.480) 0.459(0.487) 0.658(0.654) 0.619(0.619)
Starcoder2 0.600(0.576) 0.568(0.587) 0.485(0.451) 0.420(0.477) 0.635(0.632) 0.570(0.627)
Code Llama 0.586(0.630) 0.521(0.621) 0.454(0.507) 0.501(0.568) 0.622(0.679) 0.566(0.667)
GPT3.5 0.587(0.628) 0.511(0.544) 0.550(0.495) 0.508(0.511) 0.498(0.571) 0.486(0.528)
GPT4o mini 0.574(0.487) 0.574(0.463) 0.416(0.397) 0.420(0.435) 0.650(0.551) 0.675(0.533)

MBPP

GPT4o 0.448(0.538) 0.418(0.546) 0.560(0.591) 0.536(0.549) 0.514(0.545) 0.454(0.495)

TABLE VI: Pearson correlation coefficients of LLaMA2 without system prompts on four NLP tasks. The results of VR/VRO
are presented as “cosine distance-based (task-specific distance-based).” Highest correlations from different categories are ranked
and highlighted as top-1 , top-2 , and top-3 .

Dataset Single-inference Method Sample-based Method

Max Prob Average Prob Max Ent Average Ent Sample VR Sample VRO

CNN/Daily Mail -0.349 -0.480 -0.435 -0.528 -0.601(-0.528) -0.638 (-0.522)
Eli5-Category -0.054 -0.316 -0.182 -0.362 -0.354(-0.020) -0.444(0.006)
Wiki-QA -0.093 -0.122 -0.073 -0.173 -0.534(-0.212) -0.589(-0.138)
WMT 2014 -0.006 0.176 -0.145 -0.003 -0.611(-0.527) -0.746(-0.578)

Dataset Perturbation-based

Max VR Max VRO Min VR Min VRO MaxDiff VR MaxDiff VRO

CNN/Daily Mail 0.098(-0.054) -0.006(-0.053) 0.000(-0.087) -0.332(-0.320) 0.123(-0.037) 0.025(-0.028)
Eli5-Category -0.191(-0.124) -0.513(-0.293) -0.183(-0.042) -0.256(0.059) -0.169(-0.109) -0.498(-0.276)
Wiki-QA 0.007(0.029) -0.008(0.070) -0.193(-0.123) -0.438(-0.103) 0.049(0.010) -0.058(0.011)
WMT 2014 0.034(-0.066) 0.230(-0.032) -0.400(-0.409) -0.608(-0.515) 0.030(-0.055) 0.266(0.014)

entirely incorrect, the LLM still generated a low uncertainty
score. We provide the full example on our website.

Conversely, a higher degree of uncertainty also does not nec-
essarily imply that an LLM’s prediction is incorrect. We show
an example of GPT 3.5, which summarizes a piece of news
from the CNN/Daily Mail dataset. In this case, the ground
truth summary includes two details: a fire occurrence at a
park and the absence of injuries. For sample-based uncertainty
measurement, all five generated samples incorporated these
two pieces of information but also furnished additional varied
information, such as the park’s owner and its intended use.

Such extra information further leads to a higher variance in the
generated samples’ embedding, resulting in a high uncertainty
score despite that the LLM’s prediction is reliable.

Finding 6: Uncertainty is not always correlated to
inaccuracy. Future work may also consider combining
other features or indicators (besides uncertainty) to the
risk assessment for better performance.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 2024 12

Humaneval MBPP
Tasks

0.0
0.2
0.4
0.6
0.8
1.0

Pe
rfo

rm
an

ce
CodeQwen1.5
DeepSeek Coder

Starcoder2
Code Llama

GPT3.5
GPT4o mini

GPT4o

Fig. 7: Q scores of LLMs on code generation tasks

C. RQ3: Uncertainty Estimation for Code Generation

To answer this research question, we evaluate seven LLMs
capable of code generation. Their performances are shown in
Figure 7. When evaluating the efficacy of uncertainty methods
in identifying erroneous code, we treat the problem as a binary
detection task. Code is labeled as 1 if completely correct
(e.g., Q = 1) and 0 if not. We take the uncertainty scores as
indicators, and higher uncertainty suggests a greater likelihood
of errors in the code. Subsequently, we calculate the Area
Under the Receiver Operating Characteristic Curve (AUC)
scores for each method. The results are shown in Table V.
Uncertainty Measurement Techniques. Even with the dis-
tinct task of code generation and the different evaluation
metrics of AUC, we can still observe a similar trend on
code generation tasks than on NLP tasks, i.e., sample-based
methods dominate across two different datasets and diverse
LLMs. Perturbation-based methods remain in second place,
with single-inference methods ranking last overall. However,
a nuanced distinction is that single-inference methods perform
better in code generation tasks compared to other NLP tasks.
Specifically, they achieved 3 top-1 AUC scores out of 14 cases
(21.4%), while for NLP tasks, they only secured one top-1
correlation out of 32 cases (3.13%). One possible explanation
is that programming languages are more deterministic than
natural languages, which reduces the impact of language
entropy [115] on uncertainty estimation.

Finding 7: Sample-based methods remain the most
effective for risk assessment in code generation. Al-
though single-inference methods perform worse than
perturbation-based methods, they show stronger per-
formance on code generation tasks compared to NLP
tasks.

Influence of Distance Functions. Different from the results
on NLP tasks, the cosine distance between code embeddings
under-performs significantly in comparison with the task-
specific distance function, CodeBLEU. Task-specific metric
prevails in 14 out of 24 cases for the TOP-3 results.

Finding 8: The distance function can play an im-
portant role in uncertainty estimation as indicated by
the result difference between domains of NLP and
code. A more carefully designed distance function that
suits downstream tasks could potentially enhance the
effectiveness of risk assessment.

Influence of Models. Among all models, GPT-3.5 is the most
challenging model to assess code quality using uncertainty

estimation. The best AUC score is 0.667 on the HumanEval
dataset and 0.628 on the MBPP dataset. Both of them are
below 0.7. According to Figure 7, GPT-3.5 demonstrates
relatively strong performance compared to most models but
still falls short of GPT4o and GPT4o mini. It is expected
that GPT-3.5 has a lower AUC score than other open-source
models because, as seen in our findings on NLP tasks, nuanced
errors are more difficult to detect using uncertainty metrics.
The errors made by GPT-3.5 tend to be subtler than those made
by open-source models. However, it may seem counterintuitive
that assessing risks for GPT-3.5 is more challenging compared
to GPT4o and GPT4o mini. Upon further exploration, we
found that GPT-3.5 is more prone to making partial errors.
For instance, on the MBPP dataset, 40.4% of GPT-3.5’s errors
passed at least one test case, compared to 27.3% for GPT4o
and 32.4% for GPT4o mini. This suggests that the GPT4
family is more likely to either fully misunderstand the question
or generate a completely correct response, making their errors
easier to detect.

D. RQ4: Limitations in Uncertainty Estimation for Code
Generation

Limitations of detecting subtle errors. In RQ3, we hy-
pothesized that the relatively poor performance of uncertainty
estimation in the detection of GPT-3.5’s errors is due to the
challenges in pinpointing subtle mistakes that existed in the
generated code. To validate this hypothesis, we conducted ad-
ditional experiments in this RQ. We evaluated all the methods
across seven LLMs (with results for three available on our
website) on two datasets under two settings. In setting A, only
syntactically correct code is kept (e.g., Q ≥ 0.5). In setting
B, only syntactically incorrect and completely correct code is
kept (e.g., Q = 1 or Q < 0.5). We excluded the GPT family
since all their code is syntactically correct. We recorded the
best AUC score for each model under both settings. We leave
the full result on our website.

Comparing the performances between setting A and setting
B, we observe that, with the exception of Santacoder on
HumanEval, in which we exclude details in the main content
due to page limit, all other LLMs show a notable improvement.
The average score increase is 0.095. Santacoder’s decline
might be attributed to its frequent generation of syntactically
incorrect code, making the partially correct code an easily
detectable outlier.

Finding 9: Current uncertainty methods are more
suitable for detecting obvious errors instead of subtle
errors.

Limitations of distance functions. Different from our ob-
servations in RQ1, the cosine distance metric does not show
dominant performance compared with task-specific metrics on
estimating LLMs’ risks when generating code. This indicates
that it is non-trivial for selected embedding model [57] to
detect minor code differences due to an LLM’s stochasticity.

The efficiency of multi-inference metrics heavily depends
on the precise estimation of the distance between data points.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 2024 13

TABLE VII: The average distances between generated code.

Perturbation Sample

Open-source Closed-source Open-source Closed-source

Cosine 0.030±0.034 0.015±0.036 0.027±0.017 0.009±0.010
CodeBLEU 0.513±0.198 0.260±0.213 0.679±0.111 0.374±0.210

Both RQ1 and RQ3 highlight the crucial role of the distance
function. However, it appears that the cosine distance metric
falls short in code-related tasks. It is non-trivial for current
embedding LLMs to detect subtle differences generated by
randomness or perturbations.

We calculated pairwise distances within each group of
responses generated via sample-based and perturbation-based
methods. As shown in Table VII, the average cosine distance
is significantly lower than its task-specific counterpart (i.e.,
CodeBLEU [105]). This directly affects the effectiveness of
VR/VRO when determining the degree of uncertainty.

Nevertheless, CodeBLEU [105] also comes with its limita-
tions. For instance, two programs that only differ from variable
names might lead to a large CodeBLEU distance, resulting in
erroneous uncertainty estimation.

Finding 10: Neither cosine distance nor CodeBLEU
could accurately assess the difference between the
two programs, resulting in under-performed uncer-
tainty estimation for LLMs compared with NLP tasks.
Characterizing the true difference between code can be
challenging and is a limitation to performing accurate
uncertainty estimation.

VI. IMPLICATION AND OPPORTUNITY

A. For Researchers

Prompt is important. Prompt has long been proven to be a
key factor in LLM’s performance. In our study, we further
demonstrate its potential to significantly affect uncertainty
estimation’s efficacy (Finding 5). Specifically, the uncertain
behavior of LLMs might be profoundly impacted by the
prompt used in RLHF [30]. Original uncertain answers may
be supplanted by human-favored responses when integrating
specific prompt templates. A prospective research direction is
to explore the influence of the RLHF process on uncertainty
estimation and to discern strategies for more accurate esti-
mations, both from training (e.g., calibrate the model better)
and inference (e.g., refine estimation methods) standpoints.
Another interesting perspective is to design a better prompt
(e.g., instruct LLMs to switch to the uncertainty estimation
mode) to enhance the precision of the measurement.

Subtle errors can be hard to detect. We observed that
selected methods could struggle to detect subtle errors in par-
tially correct code and are easier to obvious errors (Finding 9).
One possible future direction is to improve their sensitivity by
separating the uncertainty caused by model inability and that
stemming from inherent randomness. Another direction could

involve constructing a multi-stage system, with uncertainty-
related methods at the forefront, followed by other techniques
(e.g., white-box).
Better perturbation strategy is needed for more accu-
rate uncertainty estimation. Our perturbation-based meth-
ods leverage the unique characteristic of an autoregres-
sive language model to perturb its decoding process, which
shows moderate uncertainty estimation performance in the
experiments. Compared with sample-based methods, the
perturbation-based methods do not require access and tun-
ing the temperature setting (T). Despite the fact that the
perturbation-based methods underperform the sample-based
methods in general, we believe the perturbation-based meth-
ods could be further improved with, e.g., a more fine-grained
strategy to identify key point for perturbation.
Using uncertainty estimation alone might not be enough
for comprehensive risk assessment. In RQ2 and Finding 6,
we discussed and concluded that a model’s uncertainty does
not necessarily indicate its correctness. LLMs can be highly
confident in incorrect answers and vice versa. Therefore, rely-
ing solely on uncertainty measurement may not be sufficient
for practical LLM deployment. A promising direction is to
incorporate behavioral testing [116], [117], [118], a method
recently proposed for evaluating the correctness of NLP sys-
tems. Rather than assessing whether LLMs are fully accurate,
behavioral testing evaluates whether their output meets cer-
tain important properties. This more flexible approach could
potentially be automated without the need for ground truth
and might help filter out clearly unreasonable responses, such
as those that repeatedly generate meaningless sentences. We
believe that integrating behavioral testing with uncertainty
measurement into a comprehensive risk assessment framework
will open new opportunities for improving the reliability of
LLM-driven systems.

B. For Developers

Ask more, get more. In our study, multi-inference methods
perform better than single-inference methods across different
tasks in most cases. As for a black-box LLM, getting a
comprehensive understanding beforehand or only through a
single deterministic inference could be challenging. Instead,
the more we query an LLM, the clearer we can get about its
internal knowledge regarding a specific aspect. We hypothesize
that this is because by querying models multiple times, we
gain more knowledge from them. This might be a promising
technique when the model is black-box.
Model-specific uncertainty estimation might be beneficial.
Although all the methods chosen in the paper are black-
box, we observed considerable variations in their effectiveness
across different models (e.g., Finding 2). Thus, to enhance
the efficacy of an uncertainty-based risk assessment system,
stakeholders might need to tailor their methods and under-
take model-specific optimizations. These adjustments could
be necessary even between different model versions (e.g.,
LlaMA2 and LlaMA3). Another important factor that could
influence the effectiveness of uncertainty measurement is the
deployment choices, such as quantization types and even the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 2024 14

backend hardware. These factors may affect computational
accuracy and create subtle variations between the original
models. In practical scenarios, models can be versioned based
on their quantization level, which might significantly impact
their performance and computational efficiency [119]. We
believe this is an intriguing direction for future exploration
and will leave it for future work.

VII. THREATS TO VALIDITY

In terms of internal threats, the selection of uncertainty
estimation techniques can be a threat that affects the validity
of our findings. In our study, we tried our best and collect
as many as 12 existing uncertainty estimation methods from
different categories (single deterministic, Bayesian, and test-
time augmentation), to better understand the effectiveness of
uncertainty estimation under the scope of LLMs’ erroneous
generations.

In terms of external threats, the subject LLM selection for
the evaluation could be another threat. The generalizability of
our uncertainty estimation methods to LLMs beyond those
studied presents a potential threat, as LLMs may exhibit
different uncertainty characteristics across various tasks. Ad-
ditionally, our findings and conclusions may differ as LLM
technology advances. To address this, we selected a diverse
range of 17 LLMs from both open-source and closed-source
candidates, spanning from GPT-2 XL (released in 2019) to
GPT4o (released very recently). We have carefully reviewed
our conclusions and made every effort to present findings that
are relevant and useful for state-of-the-art LLMs. Still, future
models may exhibit different characteristics. To support con-
tinued research, we will open-source our codebase, allowing
future researchers to test and analyze emerging models as they
are developed.

One limitation of this work is that we focus solely on
evaluating code generation for code-specific LLMs. Other
tasks, such as program repair [120] and code translation [121],
also merit consideration. We leave a more in-depth analysis of
these code-related tasks for future research.

VIII. CONCLUSION

This paper initiates an early exploratory study toward
understanding the risk assessment of LLMs from the lens
of uncertainty estimation. A large-scale evaluation of twelve
different uncertainty estimation techniques on nine LLMs
and six tasks is conducted. A further in-depth analysis was
made to investigate the correlations between LLMs’ prediction
uncertainty and their performance. Understanding the potential
risks of LLMs could be of great importance for industrial-scale
applications. Our results confirm that uncertainty estimation
can be a promising direction for potential risk assessment
of LLMs in both NLP and code-generation domain tasks.
However, there can still be much space and opportunity to
design more advanced uncertainty estimation techniques to
characterize the risks of an LLM more effectively. Moreover,
other possibly useful quality indicators besides uncertainty
could also be designed to better characterize the capability
boundary of an LLM from multiple perspectives. With the

recently increasing demand and urgency for trustworthiness
assurance of LLMs in industry, we hope this paper could
potentially inspire researchers and practitioners, to join the
force to design novel techniques and toolchain support and
together conquer many new relevant challenges. We also make
the replication package of this paper available, to enable fur-
ther research towards realizing trustworthy LLMs for industrial
usage.

ACKNOWLEDGMENTS

This work was supported in part by JST CRONOS
Grant (No.JPMJCS24K8), JST-Mirai Program Grant
(No.JPMJMI20B8), JSPS KAKENHI Grant (No.JP21H04877,
No.JP23H03372, and No.JP24K02920), Canada CIFAR AI
Chairs Program, the Natural Sciences and Engineering
Research Council of Canada, and the Autoware Foundation.

REFERENCES

[1] T. Markov, C. Zhang, S. Agarwal, F. E. Nekoul, T. Lee, S. Adler,
A. Jiang, and L. Weng, “A holistic approach to undesired content
detection in the real world,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 37, no. 12, 2023, pp. 15 009–15 018.

[2] B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi,
J. Liu, T. Remez, J. Rapin et al., “Code llama: Open foundation models
for code,” arXiv preprint arXiv:2308.12950, 2023.

[3] “Chatgpt,” http://chat.openai.com, 2023.
[4] L. Wu, Z. Zheng, Z. Qiu, H. Wang, H. Gu, T. Shen, C. Qin, C. Zhu,

H. Zhu, Q. Liu et al., “A survey on large language models for
recommendation,” arXiv preprint arXiv:2305.19860, 2023.

[5] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al., “Llama:
Open and efficient foundation language models,” arXiv preprint
arXiv:2302.13971, 2023.

[6] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

[7] Meta, “The llama ecosystem: Past, present, and future,” 2023.
[Online]. Available: https://perma.cc/YJ4E-FB95

[8] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang,
A. Madotto, and P. Fung, “Survey of hallucination in natural language
generation,” ACM Computing Surveys, vol. 55, no. 12, pp. 1–38, 2023.

[9] A. Tamkin, M. Brundage, J. Clark, and D. Ganguli, “Understanding the
capabilities, limitations, and societal impact of large language models,”
arXiv preprint arXiv:2102.02503, 2021.

[10] A. Abid, M. Farooqi, and J. Zou, “Persistent anti-muslim bias in large
language models,” in Proceedings of the 2021 AAAI/ACM Conference
on AI, Ethics, and Society, 2021, pp. 298–306.

[11] Y. Bang, S. Cahyawijaya, N. Lee, W. Dai, D. Su, B. Wilie, H. Lovenia,
Z. Ji, T. Yu, W. Chung et al., “A multitask, multilingual, multimodal
evaluation of chatgpt on reasoning, hallucination, and interactivity,”
arXiv preprint arXiv:2302.04023, 2023.

[12] D. Johnson, R. Goodman, J. Patrinely, C. Stone, E. Zimmerman,
R. Donald, S. Chang, S. Berkowitz, A. Finn, E. Jahangir et al., “As-
sessing the accuracy and reliability of ai-generated medical responses:
an evaluation of the chat-gpt model,” 2023.

[13] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz,
E. Kamar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg et al., “Sparks of
artificial general intelligence: Early experiments with gpt-4,” arXiv
preprint arXiv:2303.12712, 2023.

[14] J. Schuett, N. Dreksler, M. Anderljung, D. McCaffary, L. Heim,
E. Bluemke, and B. Garfinkel, “Towards best practices in agi
safety and governance: A survey of expert opinion,” arXiv preprint
arXiv:2305.07153, 2023.

[15] M. Anderljung, J. Barnhart, J. Leung, A. Korinek, C. O’Keefe, J. Whit-
tlestone, S. Avin, M. Brundage, J. Bullock, D. Cass-Beggs et al.,
“Frontier ai regulation: Managing emerging risks to public safety,”
arXiv preprint arXiv:2307.03718, 2023.

[16] Microsoft, “Responsible ai standard, v2,” 2022. [Online]. Available:
https://perma.cc/S466-T3HD

http://chat.openai.com
https://perma.cc/YJ4E-FB95
https://perma.cc/S466-T3HD

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 2024 15

[17] OpenAI, “Our approach to ai safety,” 2023. [Online]. Available:
https://perma.cc/4M6Z-LGX6

[18] Amazon, “Transform responsible ai from theory into practice,” 2023.
[Online]. Available: https://perma.cc/V6LF-ZPD7

[19] Google, “Responsible ai practices,” 2023. [Online]. Available:
https://perma.cc/SAG5-TEHL

[20] L. Koessler and J. Schuett, “Risk assessment at agi companies: A
review of popular risk assessment techniques from other safety-critical
industries,” arXiv preprint arXiv:2307.08823, 2023.

[21] Meta, “Facebook’s five pillars of responsible ai,” 2021. [Online]. Avail-
able: https://ai.meta.com/blog/facebooks-five-pillars-of-responsible-ai/

[22] ——, “Responsible ai,” 2023. [Online]. Available: https://perma.cc/
9BAY-NM9D

[23] ——, “Building generative ai features responsibly,”
2023. [Online]. Available: https://about.fb.com/news/2023/09/
building-generative-ai-features-responsibly/

[24] N. Kokhlikyan, V. Miglani, M. Martin, E. Wang, B. Alsallakh,
J. Reynolds, A. Melnikov, N. Kliushkina, C. Araya, S. Yan et al.,
“Captum: A unified and generic model interpretability library for
pytorch,” arXiv preprint arXiv:2009.07896, 2020.

[25] D. Kiela, H. Firooz, A. Mohan, V. Goswami, A. Singh, C. A.
Fitzpatrick, P. Bull, G. Lipstein, T. Nelli, R. Zhu et al., “The hateful
memes challenge: Competition report,” in NeurIPS 2020 Competition
and Demonstration Track. PMLR, 2021, pp. 344–360.

[26] U. Bhatt, J. Antorán, Y. Zhang, Q. V. Liao, P. Sattigeri, R. Fogliato,
G. Melançon, R. Krishnan, J. Stanley, O. Tickoo et al., “Uncertainty
as a form of transparency: Measuring, communicating, and using
uncertainty,” in Proceedings of the 2021 AAAI/ACM Conference on
AI, Ethics, and Society, 2021, pp. 401–413.

[27] E. Hüllermeier and W. Waegeman, “Aleatoric and epistemic uncer-
tainty in machine learning: An introduction to concepts and methods,”
Machine Learning, vol. 110, pp. 457–506, 2021.

[28] O. Rahmati, B. Choubin, A. Fathabadi, F. Coulon, E. Soltani, H. Sha-
habi, E. Mollaefar, J. Tiefenbacher, S. Cipullo, B. B. Ahmad et al.,
“Predicting uncertainty of machine learning models for modelling
nitrate pollution of groundwater using quantile regression and uneec
methods,” Science of the Total Environment, vol. 688, pp. 855–866,
2019.

[29] P. Manakul, A. Liusie, and M. J. Gales, “Selfcheckgpt: Zero-resource
black-box hallucination detection for generative large language mod-
els,” arXiv preprint arXiv:2303.08896, 2023.

[30] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray et al., “Training language
models to follow instructions with human feedback,” Advances in
Neural Information Processing Systems, vol. 35, pp. 27 730–27 744,
2022.

[31] X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo,
J. Grundy, and H. Wang, “Large language models for software engi-
neering: A systematic literature review,” 2023.

[32] A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sengupta, S. Yoo,
and J. M. Zhang, “Large language models for software engineering:
Survey and open problems,” arXiv preprint arXiv:2310.03533, 2023.

[33] D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wallace, F. Shi,
R. Zhong, S. Yih, L. Zettlemoyer, and M. Lewis, “Incoder: A
generative model for code infilling and synthesis,” in The Eleventh
International Conference on Learning Representations, 2023. [Online].
Available: https://openreview.net/forum?id=hQwb-lbM6EL

[34] L. B. Allal, R. Li, D. Kocetkov, C. Mou, C. Akiki, C. M. Ferrandis,
N. Muennighoff, M. Mishra, A. Gu, M. Dey et al., “Santacoder: don’t
reach for the stars!” arXiv preprint arXiv:2301.03988, 2023.

[35] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou,
S. Savarese, and C. Xiong, “Codegen: An open large language
model for code with multi-turn program synthesis,” arXiv preprint
arXiv:2203.13474, 2022.

[36] Q. Gu, “Llm-based code generation method for golang compiler
testing,” in Proceedings of the 31st ACM Joint European Software En-
gineering Conference and Symposium on the Foundations of Software
Engineering, 2023, pp. 2201–2203.

[37] S. Kang, J. Yoon, and S. Yoo, “Large language models are few-
shot testers: Exploring llm-based general bug reproduction,” in 2023
IEEE/ACM 45th International Conference on Software Engineering
(ICSE). IEEE, 2023, pp. 2312–2323.

[38] C. Lemieux, J. P. Inala, S. K. Lahiri, and S. Sen, “Codamosa: Escaping
coverage plateaus in test generation with pre-trained large language
models,” in International conference on software engineering (ICSE),
2023.

[39] Z. Liu, C. Chen, J. Wang, X. Che, Y. Huang, J. Hu, and Q. Wang,
“Fill in the blank: Context-aware automated text input generation for
mobile gui testing,” in 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). IEEE, 2023, pp. 1355–1367.

[40] R. Tian, Y. Ye, Y. Qin, X. Cong, Y. Lin, Z. Liu, and M. Sun, “De-
bugbench: Evaluating debugging capability of large language models,”
2024.

[41] E. First, M. Rabe, T. Ringer, and Y. Brun, “Baldur: Whole-proof
generation and repair with large language models,” in Proceedings of
the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2023, pp.
1229–1241.

[42] Y. Wei, C. S. Xia, and L. Zhang, “Copiloting the copilots: Fusing
large language models with completion engines for automated program
repair,” in Proceedings of the 31st ACM Joint European Software En-
gineering Conference and Symposium on the Foundations of Software
Engineering, 2023, pp. 172–184.

[43] M. Geng, S. Wang, D. Dong, H. Wang, G. Li, Z. Jin, X. Mao, and
X. Liao, “Large language models are few-shot summarizers: Multi-
intent comment generation via in-context learning,” 2024.

[44] X. Zhang, X. Xie, L. Ma, X. Du, Q. Hu, Y. Liu, J. Zhao, and M. Sun,
“Towards characterizing adversarial defects of deep learning software
from the lens of uncertainty,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, 2020, pp. 739–751.

[45] J. Kim, R. Feldt, and S. Yoo, “Guiding deep learning system testing
using surprise adequacy,” in 2019 IEEE/ACM 41st International Con-
ference on Software Engineering (ICSE). IEEE, 2019, pp. 1039–1049.

[46] M. Weiss and P. Tonella, “Uncertainty quantification for deep neural
networks: An empirical comparison and usage guidelines,” Software
Testing, Verification and Reliability, p. e1840, 2023.

[47] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[48] T. Kuhn, H. Niemann, and E. G. Schukat-Talamazzini, “Ergodic hidden
markov models and polygrams for language modeling,” in Proceedings
of ICASSP’94. IEEE International Conference on Acoustics, Speech
and Signal Processing, vol. 1. IEEE, 1994, pp. I–357.

[49] T. Brants, A. Popat, P. Xu, F. J. Och, and J. Dean, “Large language
models in machine translation,” in Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-CoNLL), 2007,
pp. 858–867.

[50] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur,
“Recurrent neural network based language model.” in Interspeech,
vol. 2, no. 3. Makuhari, 2010, pp. 1045–1048.

[51] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[52] J. Howard and S. Ruder, “Universal language model fine-tuning for
text classification,” arXiv preprint arXiv:1801.06146, 2018.

[53] Y. Liu and M. Lapata, “Text summarization with pretrained encoders,”
arXiv preprint arXiv:1908.08345, 2019.

[54] J. Yang, M. Wang, H. Zhou, C. Zhao, W. Zhang, Y. Yu, and L. Li,
“Towards making the most of bert in neural machine translation,” in
Proceedings of the AAAI conference on artificial intelligence, vol. 34,
no. 05, 2020, pp. 9378–9385.

[55] J. D. M.-W. C. Kenton and L. K. Toutanova, “Bert: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings
of NAACL-HLT, 2019, pp. 4171–4186.

[56] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[57] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu et al., “Graphcodebert: Pre-training code
representations with data flow,” arXiv preprint arXiv:2009.08366, 2020.

[58] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, “Bart: Denoising sequence-to-
sequence pre-training for natural language generation, translation, and
comprehension,” in Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, 2020, pp. 7871–7880.

[59] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and
generation,” arXiv preprint arXiv:2109.00859, 2021.

[60] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

https://perma.cc/4M6Z-LGX6
https://perma.cc/V6LF-ZPD7
https://perma.cc/SAG5-TEHL
https://ai.meta.com/blog/facebooks-five-pillars-of-responsible-ai/
https://perma.cc/9BAY-NM9D
https://perma.cc/9BAY-NM9D
https://about.fb.com/news/2023/09/building-generative-ai-features-responsibly/
https://about.fb.com/news/2023/09/building-generative-ai-features-responsibly/
https://openreview.net/forum?id=hQwb-lbM6EL

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 2024 16

[61] Y. Dong, X. Jiang, Z. Jin, and G. Li, “Self-collaboration code genera-
tion via chatgpt,” arXiv preprint arXiv:2304.07590, 2023.

[62] C. S. Xia and L. Zhang, “Keep the conversation going: Fixing
162 out of 337 bugs for $0.42 each using chatgpt,” arXiv preprint
arXiv:2304.00385, 2023.

[63] K. R. Varshney and H. Alemzadeh, “On the safety of machine learning:
Cyber-physical systems, decision sciences, and data products,” Big
data, vol. 5, no. 3, pp. 246–255, 2017.

[64] M. Barreno, B. Nelson, A. D. Joseph, and J. D. Tygar, “The security
of machine learning,” Machine Learning, vol. 81, pp. 121–148, 2010.

[65] S. Lo Piano, “Ethical principles in machine learning and artificial intel-
ligence: cases from the field and possible ways forward,” Humanities
and Social Sciences Communications, vol. 7, no. 1, pp. 1–7, 2020.

[66] J. Yang, K. Zhou, Y. Li, and Z. Liu, “Generalized out-of-distribution
detection: A survey,” arXiv preprint arXiv:2110.11334, 2021.

[67] S. Rabanser, S. Günnemann, and Z. Lipton, “Failing loudly: An
empirical study of methods for detecting dataset shift,” Advances in
Neural Information Processing Systems, vol. 32, 2019.

[68] C. Ning and F. You, “Optimization under uncertainty in the era of big
data and deep learning: When machine learning meets mathematical
programming,” Computers & Chemical Engineering, vol. 125, pp. 434–
448, 2019.

[69] A. Ashukha, A. Lyzhov, D. Molchanov, and D. Vetrov, “Pitfalls of in-
domain uncertainty estimation and ensembling in deep learning,” arXiv
preprint arXiv:2002.06470, 2020.

[70] Y.-C. Hsu, Y. Shen, H. Jin, and Z. Kira, “Generalized odin: Detect-
ing out-of-distribution image without learning from out-of-distribution
data,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2020, pp. 10 951–10 960.

[71] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian
deep learning for computer vision?” Advances in neural information
processing systems, vol. 30, 2017.

[72] J. Gawlikowski, C. R. N. Tassi, M. Ali, J. Lee, M. Humt, J. Feng,
A. Kruspe, R. Triebel, P. Jung, R. Roscher et al., “A survey of
uncertainty in deep neural networks,” arXiv preprint arXiv:2107.03342,
2021.

[73] P. Oberdiek, M. Rottmann, and H. Gottschalk, “Classification uncer-
tainty of deep neural networks based on gradient information,” in Artifi-
cial Neural Networks in Pattern Recognition: 8th IAPR TC3 Workshop,
ANNPR 2018, Siena, Italy, September 19–21, 2018, Proceedings 8.
Springer, 2018, pp. 113–125.

[74] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” Advances in
neural information processing systems, vol. 30, 2017.

[75] D. Barber and C. M. Bishop, “Ensemble learning in bayesian neural
networks,” Nato ASI Series F Computer and Systems Sciences, vol.
168, pp. 215–238, 1998.

[76] A. Lyzhov, Y. Molchanova, A. Ashukha, D. Molchanov, and D. Vetrov,
“Greedy policy search: A simple baseline for learnable test-time
augmentation,” in Conference on Uncertainty in Artificial Intelligence.
PMLR, 2020, pp. 1308–1317.

[77] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in international
conference on machine learning. PMLR, 2016, pp. 1050–1059.

[78] G. Wang, W. Li, M. Aertsen, J. Deprest, S. Ourselin, and T. Ver-
cauteren, “Aleatoric uncertainty estimation with test-time augmentation
for medical image segmentation with convolutional neural networks,”
Neurocomputing, vol. 338, pp. 34–45, 2019.

[79] X. Huang, W. Ruan, W. Huang, G. Jin, Y. Dong, C. Wu, S. Bensalem,
R. Mu, Y. Qi, X. Zhao et al., “A survey of safety and trustworthiness of
large language models through the lens of verification and validation,”
arXiv preprint arXiv:2305.11391, 2023.

[80] X. Chen, J. Ye, C. Zu, N. Xu, R. Zheng, M. Peng, J. Zhou, T. Gui,
Q. Zhang, and X. Huang, “How robust is gpt-3.5 to predecessors? a
comprehensive study on language understanding tasks,” arXiv preprint
arXiv:2303.00293, 2023.

[81] M. Jang and T. Lukasiewicz, “Consistency analysis of chatgpt,” arXiv
preprint arXiv:2303.06273, 2023.

[82] Y. Xiao and W. Y. Wang, “On hallucination and predictive uncertainty
in conditional language generation,” in Proceedings of the 16th Con-
ference of the European Chapter of the Association for Computational
Linguistics: Main Volume, 2021, pp. 2734–2744.

[83] A. Malinin and M. Gales, “Uncertainty estimation in autoregressive
structured prediction,” in International Conference on Learning Rep-
resentations.

[84] L. Kuhn, Y. Gal, and S. Farquhar, “Semantic uncertainty: Linguistic
invariances for uncertainty estimation in natural language generation,”
arXiv preprint arXiv:2302.09664, 2023.

[85] J. Alammar, “Ecco: An open source library for the explainability of
transformer language models,” in Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing:
System Demonstrations. Association for Computational Linguistics,
2021.

[86] A. Galassi, M. Lippi, and P. Torroni, “Attention in natural language
processing,” IEEE transactions on neural networks and learning sys-
tems, vol. 32, no. 10, pp. 4291–4308, 2020.

[87] J. Vig and Y. Belinkov, “Analyzing the structure of attention in
a transformer language model,” in Proceedings of the 2019 ACL
Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks
for NLP, 2019, pp. 63–76.

[88] “Gpt 3.5,” https://platform.openai.com/docs/models/gpt-3-5, 2023.
[89] D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified

and out-of-distribution examples in neural networks,” in 5th
International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017. [Online]. Available: https://openreview.net/
forum?id=Hkg4TI9xl

[90] U. Arora, W. Huang, and H. He, “Types of out-of-distribution texts
and how to detect them,” in Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, 2021, pp. 10 687–
10 701.

[91] Y. Gal, “Uncertainty in deep learning.” University of Cambridge.,
2016.

[92] Z. Wang, Y. Huang, L. Ma, H. Yokoyama, S. Tokumoto, and
K. Munakata, “An exploratory study of ai system risk assessment
from the lens of data distribution and uncertainty,” arXiv preprint
arXiv:2212.06828, 2022.

[93] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the
40th annual meeting of the Association for Computational Linguistics,
2002, pp. 311–318.

[94] C. Meister, T. Pimentel, G. Wiher, and R. Cotterell, “Locally typical
sampling,” Transactions of the Association for Computational Linguis-
tics, vol. 11, pp. 102–121, 2023.

[95] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman,
A. Mathur, A. Schelten, A. Yang, A. Fan et al., “The llama 3 herd of
models,” arXiv preprint arXiv:2407.21783, 2024.

[96] G. Team, M. Riviere, S. Pathak, P. G. Sessa, C. Hardin, S. Bhupatiraju,
L. Hussenot, T. Mesnard, B. Shahriari, A. Ramé et al., “Gemma 2:
Improving open language models at a practical size,” arXiv preprint
arXiv:2408.00118, 2024.

[97] M. Abdin, S. A. Jacobs, A. A. Awan, J. Aneja, A. Awadallah,
H. Awadalla, N. Bach, A. Bahree, A. Bakhtiari, H. Behl et al., “Phi-
3 technical report: A highly capable language model locally on your
phone,” arXiv preprint arXiv:2404.14219, 2024.

[98] J. Bai, S. Bai, Y. Chu, Z. Cui, K. Dang, X. Deng, Y. Fan, W. Ge,
Y. Han, F. Huang, B. Hui, L. Ji, M. Li, J. Lin, R. Lin, D. Liu, G. Liu,
C. Lu, K. Lu, J. Ma, R. Men, X. Ren, X. Ren, C. Tan, S. Tan, J. Tu,
P. Wang, S. Wang, W. Wang, S. Wu, B. Xu, J. Xu, A. Yang, H. Yang,
J. Yang, S. Yang, Y. Yao, B. Yu, H. Yuan, Z. Yuan, J. Zhang, X. Zhang,
Y. Zhang, Z. Zhang, C. Zhou, J. Zhou, X. Zhou, and T. Zhu, “Qwen
technical report,” arXiv preprint arXiv:2309.16609, 2023.

[99] D. Guo, Q. Zhu, D. Yang, Z. Xie, K. Dong, W. Zhang, G. Chen, X. Bi,
Y. Wu, Y. Li et al., “Deepseek-coder: When the large language model
meets programming–the rise of code intelligence,” arXiv preprint
arXiv:2401.14196, 2024.

[100] A. Lozhkov, R. Li, L. B. Allal, F. Cassano, J. Lamy-Poirier, N. Tazi,
A. Tang, D. Pykhtar, J. Liu, Y. Wei et al., “Starcoder 2 and the stack
v2: The next generation,” arXiv preprint arXiv:2402.19173, 2024.

[101] “Gpt-4o,” https://openai.com/index/hello-gpt-4o/, 2024.
[102] “Gpt-4o mini,” https://openai.com/index/

gpt-4o-mini-advancing-cost-efficient-intelligence/, 2024.
[103] Y. Yang, W.-t. Yih, and C. Meek, “WikiQA: A challenge dataset

for open-domain question answering,” in Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing.
Lisbon, Portugal: Association for Computational Linguistics, Sep.
2015, pp. 2013–2018. [Online]. Available: https://aclanthology.org/
D15-1237

[104] C.-Y. Lin, “ROUGE: A package for automatic evaluation of
summaries,” in Text Summarization Branches Out. Barcelona, Spain:

https://platform.openai.com/docs/models/gpt-3-5
https://openreview.net/forum?id=Hkg4TI9xl
https://openreview.net/forum?id=Hkg4TI9xl
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://aclanthology.org/D15-1237
https://aclanthology.org/D15-1237

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 2024 17

Association for Computational Linguistics, Jul. 2004, pp. 74–81.
[Online]. Available: https://aclanthology.org/W04-1013

[105] S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan,
M. Zhou, A. Blanco, and S. Ma, “Codebleu: a method for automatic
evaluation of code synthesis,” arXiv preprint arXiv:2009.10297, 2020.

[106] J. Gao, Q. Zhou, and R. Qiu, “ELI5-Category: a categorized open-
domain qa dataset,” 2021.

[107] R. Nallapati, B. Zhou, C. Gulcehre, B. Xiang et al., “Abstractive text
summarization using sequence-to-sequence rnns and beyond,” arXiv
preprint arXiv:1602.06023, 2016.

[108] O. Bojar, C. Buck, C. Federmann, B. Haddow, P. Koehn, J. Leveling,
C. Monz, P. Pecina, M. Post, H. Saint-Amand, R. Soricut,
L. Specia, and A. Tamchyna, “Findings of the 2014 workshop on
statistical machine translation,” in Proceedings of the Ninth Workshop
on Statistical Machine Translation. Baltimore, Maryland, USA:
Association for Computational Linguistics, Jun. 2014, pp. 12–58.
[Online]. Available: https://aclanthology.org/W14-3302

[109] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[110] J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan,
E. Jiang, C. Cai, M. Terry, Q. Le et al., “Program synthesis with large
language models,” arXiv preprint arXiv:2108.07732, 2021.

[111] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings
using siamese bert-networks,” in Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, 11 2019. [Online]. Available: https:
//arxiv.org/abs/1908.10084

[112] X. Chen, M. Lin, N. Schärli, and D. Zhou, “Teaching large language
models to self-debug,” arXiv preprint arXiv:2304.05128, 2023.

[113] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser,
M. Plappert, J. Tworek, J. Hilton, R. Nakano et al., “Training verifiers
to solve math word problems,” arXiv preprint arXiv:2110.14168, 2021.

[114] “all-mpnet-base-v2,” https://huggingface.co/sentence-transformers/
all-mpnet-base-v2, 2023.

[115] S. Arora and A. Goyal, “A theory for emergence of complex skills in
language models,” arXiv preprint arXiv:2307.15936, 2023.

[116] M. T. Ribeiro, T. Wu, C. Guestrin, and S. Singh, “Beyond
accuracy: Behavioral testing of NLP models with CheckList,”
in Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, D. Jurafsky, J. Chai, N. Schluter,
and J. Tetreault, Eds. Online: Association for Computational
Linguistics, Jul. 2020, pp. 4902–4912. [Online]. Available: https:
//aclanthology.org/2020.acl-main.442

[117] J. Ferrando, M. Sperber, H. Setiawan, D. Telaar, and S. Hasan,
“Automating behavioral testing in machine translation,” in Proceedings
of the Eighth Conference on Machine Translation, P. Koehn,
B. Haddow, T. Kocmi, and C. Monz, Eds. Singapore: Association
for Computational Linguistics, Dec. 2023, pp. 1014–1030. [Online].
Available: https://aclanthology.org/2023.wmt-1.97

[118] J. Lee, S. Chen, A. Mordahl, C. Liu, W. Yang, and S. Wei, “Automated
testing linguistic capabilities of nlp models,” ACM Transactions on
Software Engineering and Methodology, 2024.

[119] S. Li, X. Ning, L. Wang, T. Liu, X. Shi, S. Yan, G. Dai, H. Yang, and
Y. Wang, “Evaluating quantized large language models,” arXiv preprint
arXiv:2402.18158, 2024.

[120] C. S. Xia, Y. Wei, and L. Zhang, “Automated program repair in the
era of large pre-trained language models,” in 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE). IEEE,
2023, pp. 1482–1494.

[121] R. Pan, A. R. Ibrahimzada, R. Krishna, D. Sankar, L. P. Wassi,
M. Merler, B. Sobolev, R. Pavuluri, S. Sinha, and R. Jabbarvand,
“Lost in translation: A study of bugs introduced by large language
models while translating code,” in Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering, ser. ICSE ’24.
New York, NY, USA: Association for Computing Machinery, 2024.
[Online]. Available: https://doi-org.login.ezproxy.library.ualberta.ca/10.
1145/3597503.3639226

Yuheng Huang (Graduate Student Member, IEEE)
received a BE degree from the Beijing University of
Posts and Telecommunications, China, and a mas-
ter’s degree from the University of Alberta, Canada.
He is currently working toward a PhD degree at The
University of Tokyo, Japan. His research interests
primarily focus on the quality assurance of AI-
enabled complex systems as well as developing
interactive interfaces that can enable more efficient
human-in-the-loop AI development from Human-
Computer Interaction (HCI) perspectives.

Jiayang Song (Graduate Student Member, IEEE)
received the B.E. degree from Western University,
London, ON, Canada, in 2019 and the M.E. de-
gree from the University of Toronto, Toronto, ON,
Canada, in 2021. He is currently pursuing a Ph.D.
degree with the University of Alberta, Edmonton,
AB, Canada. His research interests include testing,
analysis, repairing, and enhancement of AI systems
and their applications for quality assurance of trust-
worthy AI-enabled cyber-physical systems.

Zhijie Wang (Graduate Student Member, IEEE) is
currently a Ph.D. candidate in Software Engineering
at the University of Alberta, AB, Canada. Previously,
he received his M.E. degree from the University of
Waterloo, ON, Canada in 2021. His research interest
focuses on software engineering support for complex
AI-based software systems. He is also broadly inter-
ested in the intersection of software engineering, AI,
and human-computer interaction (HCI). His work
has been published in top-tier SE and HCI venues
and has received a best paper award (FSE ’23).

Shengming Zhao received a B.E. degree from
the Beijing University of Posts and Telecommuni-
cations, Beijing, China. He is currently pursuing
a M.Sc. degree with the University of Alberta,
Edmonton, Canada. His research interests include
quality assurance of AI systems and automatic code
generation.

Huaming Chen (Member, IEEE) received the Ph.D.
degree from the University of Wollongong, Wollon-
gong, Australia. He is currently a senior lecturer
with the School of Electrical and Computer Engi-
neering, the University of Sydney, Sydney, Australia.
His main research interests include software engi-
neering/security, trustworthy AI, and applied ma-
chine learning. He regularly serves on the program
committees of ACM MM, CCS, ACSAC, SANER,
IJCAI, KDD, The Web Conference, SIAM ICDM,
ECML/PKDD and so on.

https://aclanthology.org/W04-1013
https://aclanthology.org/W14-3302
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://aclanthology.org/2020.acl-main.442
https://aclanthology.org/2020.acl-main.442
https://aclanthology.org/2023.wmt-1.97
https://doi-org.login.ezproxy.library.ualberta.ca/10.1145/3597503.3639226
https://doi-org.login.ezproxy.library.ualberta.ca/10.1145/3597503.3639226

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 2024 18

Felix Juefei-Xu (Member, IEEE) received the Ph.D.
degree in Electrical and Computer Engineering from
Carnegie Mellon University (CMU), Pittsburgh, PA,
USA. Prior to that, he received the M.S. degree in
Electrical and Computer Engineering and the M.S.
degree in Machine Learning from CMU, and the
B.S. degree in Electronic Engineering from Shang-
hai Jiao Tong University (SJTU), Shanghai, China.
Currently, he is a Research Scientist with GenAI at
Meta, based in New York City, where he works on
robust perception and efficient learning problems in

the domain of generative AI. He is also affiliated with New York University as
an Adjunct Professor. Previously, he was a Research Scientist with Alibaba
Group, based in Sunnyvale, CA. He was the recipient of multiple best or
distinguished paper awards, including IJCB 2011, BTAS 2015 and 2016, ASE
2018, and ACCV 2018.

Lei Ma (Member, IEEE) received the B.E. de-
gree from Shanghai Jiao Tong University, Shanghai,
China, in 2009, and the M.E. and Ph.D. degrees
from The University of Tokyo, Tokyo, Japan, in 2011
and 2014, respectively. He is currently an Associate
Professor with The University of Tokyo and the Uni-
versity of Alberta, Edmonton, AB, Canada. He was
honorably selected as Canada CIFAR AI Chair and
a fellow with Alberta Machine Intelligence Institute
(Amii), Edmonton. His research interests include the
interdisciplinary fields of software engineering (SE)

and trustworthy artificial intelligence, with a special focus on the quality,
reliability, safety, and security aspects of AI systems.

	Introduction
	Background and Related Work
	Large Language Models
	Risk Assessment for ML Models

	Uncertainty Estimation for LLMs
	Problem Scenario
	Single-inference Uncertainty Estimation
	Multi-inference Uncertainty Estimation
	Metrics
	Stochastic inference

	Study Design
	Subject LLMs
	Tasks
	Evaluation Metrics
	Experiment Settings

	Results
	RQ1: Uncertainty Estimation for NLP Tasks
	RQ2: Limitations in Uncertainty Estimation for NLP Tasks
	RQ3: Uncertainty Estimation for Code Generation
	RQ4: Limitations in Uncertainty Estimation for Code Generation

	Implication and Opportunity
	For Researchers
	For Developers

	Threats to Validity
	Conclusion
	References
	Biographies
	Yuheng Huang
	Jiayang Song
	Zhijie Wang
	Shengming Zhao
	Huaming Chen
	Felix Juefei-Xu
	Lei Ma

