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GenSafe: A Generalizable Safety Enhancer for Safe
Reinforcement Learning Algorithms Based on
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Abstract—Although deep reinforcement learning has demon-
strated impressive achievements in controlling various au-
tonomous systems, e.g., autonomous vehicles or humanoid robots,
its inherent reliance on random exploration raises safety concerns
in their real-world applications. To improve system safety during
the learning process, a variety of Safe Reinforcement Learning
(SRL) algorithms have been proposed, which usually incorporate
safety constraints within the Constrained Markov Decision Pro-
cess (CMDP) framework. However, the efficacy of these SRL
algorithms often relies on accurate function approximations,
a task that is notably challenging to accomplish in the early
learning stages due to data insufficiency. To address this problem,
we introduce a Genralizable Safety enhancer (GenSafe) in this
work. Leveraging model order reduction techniques, we first
construct a Reduced Order Markov Decision Process (ROMDP)
as a low-dimensional proxy for the original cost function in
CMDP. Then, by solving ROMDP-based constraints that are
reformulated from the original cost constraints, the proposed
GenSafe refines the actions taken by the agent to enhance the
possibility of constraint satisfaction. Essentially, GenSafe acts as
an additional safety layer for SRL algorithms, offering broad
compatibility across diverse SRL approaches. The performance
of GenSafe is examined on multiple SRL benchmark problems.
The results show that, it is not only able to improve the safety
performance, especially in the early learning phases, but also to
maintain the task performance at a satisfactory level.

Index Terms—Safe Reinforcement Learning, Constrained
Markov Decision Process, Model Order Reduction

I. INTRODUCTION

OVER the past decade, Deep Reinforcement Learning
(DRL) has achieved remarkable advancements in the

control of a diverse array of autonomous systems, such
as robotic manipulators [1], autonomous vehicles [2], and
drones [3]. However, the inherent random exploration char-
acteristic of DRL algorithms often undermines the safety of
the learning process [4]. During the progression towards an
optimal policy, the agent may exhibit numerous unsafe inter-
mediate policies, posing risks not only to the system itself but
also to its surrounding environment [5]. For example, an au-
tonomous vehicle might repeatedly collide with obstacles prior
to the successful determination of a DRL-based controller. Due
to these safety concerns, the majority of DRL research findings
have been confined to simulated environments [6], with fewer
applications in real-world experiments [7]. This limitation
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becomes more evident in tasks where ensuring safety is of
paramount importance.

To address this challenge, a variety of Safe Reinforcement
Learning (SRL) approaches have been proposed [8], [9],
aiming to realize a safe learning process for DRL algorithms.
Since incorporating safety specifications naturally involves
constraints, state-of-the-art SRL approaches often employ the
Constrained Markov Decision Process (CMDP) [10] as their
fundamental mathematical framework. In CMDP, a cost func-
tion is defined in addition to the standard reward function,
which maps undesirable behavior at any given time step to
a non-negative scalar cost. A system is considered safe if
a cost-related constraint, e.g., the accumulated cost should
remain below a predefined threshold, is satisfied [11]. This
transforms the SRL problem into a constraint satisfaction
problem and allows for the independent consideration of task
performance and safety specifications [12]. However, although
optimal solutions for finite and low-dimensional CMDPs can
be obtained by linear programming [13], solving CMDPs for
complex systems with high-dimensional and continuous state
and action spaces remains a challenging problem.

Modern SRL techniques typically fall into two categories:
model-based and model-free approaches [9]. Model-based
approaches primarily focus on learning a system or cost model,
which is then utilized to refine the current policy [14]–[21].
Although these approaches generally exhibit better sample
efficiency compared to model-free ones, their performance is
highly dependent on the accuracy of the learned model [17].
Conversely, model-free approaches usually employ policy gra-
dient methods, necessitating function approximations for both
reward and cost functions [22]–[25]. Accurate approximations
are crucial in these methods for ensuring both monotonic
performance improvement and constraint satisfaction [22].
However, obtaining reliable and precise function approxima-
tions is a challenging task, especially in the early learning
stage, where the amount of available data is often insufficient.
This inevitably diminishes the efficacy of model-free SRL
methods [25].

In this work, we aim to enhance the performance of model-
free SRL approaches, with an emphasis on improving their
constraint satisfaction in the early learning stages. To achieve
this, we introduce a Genralizable Safety enhancer (GenSafe)
that is able to augment the safety performance of model-free
SRL algorithms while maintaining the task performance at
a satisfactory level. Drawing inspiration from research that
employs model order reduction [26] to solve complex system
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dynamics [7], [27], [28], we first address the challenge of data
insufficiency by approximating the CMDP’s cost function with
a low-dimensional Markov Decision Process (MDP) model.
This approximation is achieved by reducing the dimensionality
of the original state space, resulting in a Reduced Order
Markov Decision Process (ROMDP) that serves as a proxy for
the cost function and offers estimates on system safety. Then,
the proposed GenSafe reinterprets the original cost constraint
in CMDP into ROMDP-based constraints. By resolving these
revised constraints, GenSafe modifies each action taken by the
agent to enhance the possibility of constraint satisfaction. In
essence, GenSafe acts as an additional safety layer for SRL
algorithms [29] (see Fig. 1). Its compatibility with a diverse
range of model-free SRL algorithms suggests its potential as a
broadly generalizable tool for enhancing safety across various
SRL applications and scenarios.

The contributions of this work are summarized as follows:
• We propose an innovative order reduction technique to

construct a ROMDP that serves as a low-dimensional
approximator for the cost function in CMDP. Such a
ROMDP is able to effectively provide more accurate
estimates of system safety in the early learning stages
where data availability is limited, consequently leading
to enhanced constraint satisfaction.

• Utilizing the constructed ROMDP, we present GenSafe,
a novel approach for augmenting SRL algorithms. By
modifying the actions of the agent, GenSafe enhances
the probability of achieving constraint satisfaction while
simultaneously maintaining task performance at a sat-
isfactory level. Moreover, GenSafe is designed as an
additional safety layer, which enables its compatibility
and generalization across various SRL algorithms.

• We perform an extensive analysis of GenSafe’s perfor-
mance through experiments on a variety of SRL bench-
mark problems. The results validate the effectiveness
of GenSafe, demonstrating its ability to enhance the
performance of SRL algorithms.

II. RELATED WORK

A. Model-free SRL

Constrained Policy Optimization (CPO) [22] is the first
model-free SRL approach that employs the policy gradient
method. It utilizes surrogate functions to approximate both
objective and constraint functions. However, the inherent diffi-
culty in achieving accurate function approximation diminishes
the performance of CPO in certain state-of-the-art SRL bench-
mark problems, such as SafetyGym [12]. In [12], a Lagrangian
relaxation of the SRL problem is introduced, which is inte-
grated with Proximal Policy Optimization (PPO) [30] to create
a PPO-Lagrangian algorithm, and with Trust Region Policy
Optimization (TRPO) [31] for a TRPO-Lagrangian algorithm.
Such a primal-dual method transforms the constrained problem
into an unconstrained one by augmenting the objective with a
sum of constraints, each weighted by its respective Lagrange
multiplier [32]. Based on this concept, various primal-dual
SRL approaches have been developed [23]–[25], [33]–[37].
For instance, [23] adopts a penalized reward function and
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Fig. 1. SRL with GenSafe. At each timestep, the current SRL policy
recommends an action a0 based on the current state s0. Then, the proposed
GenSafe performs an action correction to identify a modified action am
that is more likely to satisfy safety constraints. Such a corrective process
involves resolving an optimization problem that considers both the immediate
and future cost constraints, which are derived from the constructed ROMDP.
We utilize the set of data samples D observed during the learning process
to construct the ROMDP, which serves as a low-dimensional proxy for the
original cost function in CMDP.

a two-timescale stochastic approximation scheme for policy
optimization, where the Lagrange multiplier is updated on a
slower timescale compared to the policy parameters. In [36],
a PID-based technique is proposed for mitigating oscillations
in Lagrangian methods, aiming to reduce constraint viola-
tions. Derived from CPO, [35] introduces the Projection-
based Constrained Policy Optimization (PCPO), a two-step
method that first solves the policy search problem via TRPO
and then projects the policy back to a feasible region for
satisfying safety constraints. Following this, [25] presents
the First Order Constrained Policy Optimization (FOCOPS),
which utilizes first-order optimization to achieve improved
computational efficiency over PCPO. However, these primal-
dual methods often exhibit sensitivity to the initialization of
Lagrange multipliers and learning rates, which could result in
considerable hyperparameter tuning efforts [38]. Moreover, the
introduction of dual parameters may pose stability challenges
at the algorithm’s saddle points [9].

Another category of model-free SRL approaches is the
primal methods [29], [39]–[42], which achieve constraint
satisfaction through diverse designs of the objective function
or the update process without the introduction of dual vari-
ables. For example, [42] introduces Interior Point Optimization
(IPO), which utilizes logarithmic barrier functions to satisfy
safety constraints. Similarly, Lyapunov functions have been
employed in several SRL studies to maintain safety during
the learning process [39]–[41], where the agent’s actions
are restricted by these functions. Nevertheless, these primal
methods often require prior system knowledge for designing
the barrier or Lyapunov functions, which can be inherently
complex. Akin to our work, [29] also adds a safety layer to the
policy network to ensure constraint satisfaction. However, [29]
relies on pre-collected offline data to construct the safety layer
and necessitates new datasets for each task, thereby limiting
its applicability and generalizability. In contrast, the proposed
GenSafe is an online learning method and does not demand
pre-knowledge about the system or specific tasks.

A notable challenge with model-free SRL approaches is
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their dependence on accurate function approximations, e.g.,
for cost and reward functions, to achieve satisfactory per-
formance [8], [9]. This issue becomes more pronounced in
the early learning phase, where limited data availability often
hinders the creation of precise approximations, leading to
reduced performance. To tackle this problem, we present
GenSafe in this work, which utilizes a ROMDP to estimate the
cost return more effectively. By employing order reduction, it
mitigates the problem of data insufficiency, and as a result,
improved constraint satisfaction is realized, particularly in the
early learning stages.

B. Model-based SRL
Model-based SRL approaches [14]–[21] are generally con-

sidered more sample efficient than model-free ones. In [14], a
model-based method that learns both the system dynamics and
the cost function for addressing safety concerns is proposed.
This method leverages the learned model to generate sample
trajectories, which are then used to refine the policy via
an adapted cross-entropy method. Similarly, [15] employs
PILCO [43] for learning model dynamics and optimizes the
policy using constraint functions based on Conditional Value
at Risk (CVaR) [44]. Contrasting with these approaches, [16]
utilizes a penalized reward function instead of a separate cost
function for optimization purposes. However, the effectiveness
of model-based SRL approaches often highly depends on the
accuracy of the learned model. In practical tasks, obtaining an
accurate system model could be a challenging task.

There exist also model-based SRL approaches that are
grounded in control-theoretical concepts [7], [27], [40], [45]–
[52]. For example, in [45], reachability analysis is employed
to devise a reliable backup policy that could rectify potentially
hazardous actions taken by the agent. Lyapunov functions are
also frequently used to maintain system stability during the
learning process [40], [46]. Nevertheless, these approaches
often necessitate the manual design of Lyapunov functions,
which might be infeasible for complicated tasks. In [48], [49],
the concept of the region of attraction is utilized to define a
safe region, and the exploration during the learning process
is confined to this specified region. Model Predictive Control
(MPC) [53] is another tool widely used for safe learning [50]–
[52]. These methods involve learning a system or distur-
bance model and applying robust MPC to determine safe ac-
tions [54]. However, approaches guided by control-theoretical
concepts usually face computational difficulties [55], limiting
their applicability predominantly to systems characterized by
linear or low-dimensional dynamics [50].

III. PRELIMINARY

In this section, we first present the fundamental concepts of
CMDP (Sec. III-A). Then, we define the SRL problem within
the CMDP framework (Sec. III-B). Finally, we introduce PPO-
Lagrangian, which is usually regarded as a baseline method
in SRL, to demonstrate the typical realization of SRL using
model-free approaches (Sec. III-C). In Sec. V, we will use
PPO-Lagrangian as a representative example to explain the
integration of the proposed GenSafe with model-free SRL
methods.

A. Constrained Markov Decision Process (CMDP)
The CMDP extends the standard MDP by incorporating a

constraint function. A CMDP is defined by the tuple M =
(S,A, T,R,C, γ, µ), where S is the set of states, and A is
the set of actions. T : S × A × S → [0, 1] denotes the state
transition kernel, with T (s, a, s′) represents the probability of
transitioning from state s ∈ S to state s′ ∈ S under action
a ∈ A. The reward function R : S × A → R and the cost
function C : S × A → R assign single-stage reward r and
cost c to each state-action pair, respectively. γ is the discount
factor and µ is the initial state distribution. In general, both
the reward and cost functions in CMDP are considered to be
non-negative.

Remark 1. In this work, we consider a single constraint
function for simplicity. For scenarios that involve multiple
constraint functions, the proposed method can be extended
by replicating the computations used for the single constraint
across each of the additional constraints.

For a given state s, a stationary policy π(s) : S → A
determines an action a for the agent to take. In deep learn-
ing contexts, the policy is typically represented by a neural
network parameterized by θ, and is denoted as πθ. Given a
policy πθ, the state value function V πθ

R (s), the state-action
value function Qπθ

R (s, a), and the advantage function Aπθ

R (s, a)
for the reward are defined as

V πθ

R (s) = Eπθ

[ ∞∑
t=0

γtR(st, at)

∣∣∣∣∣s0 = s

]
, (1)

Qπθ

R (s, a) = Eπθ

[ ∞∑
t=0

γtR(st, at)

∣∣∣∣∣s0 = s, a0 = a

]
, (2)

Aπθ

R (s, a) = Qπθ

R (s, a)− V πθ

R (s). (3)

Similarly, for the cost, the state value function V πθ

C (s), the
state-action value function Qπθ

C (s, a), and the advantage func-
tion Aπθ

C (s, a) are given by substituting the reward function
R with the cost function C. For simplicity, the notation πθ

will be omitted in the remainder of this paper when there is
no ambiguity.

B. Safe Reinforcement Learning (SRL)
The goal of SRL is to maximize task performance while en-

suring the satisfaction of safety requirements. Within CMDP,
such an SRL problem can be defined through the use of
infinite-horizon discounted reward JR(πθ) and cost JC(πθ)
returns, leading to the following optimization problem:

max
θ

JR(πθ), s.t. JC(πθ) ≤ d, (4)

where JR(πθ) = Eπθ
[
∑∞

t=0 γ
tR(st, at)] and JC(πθ) =

Eπθ
[
∑∞

t=0 γ
tC(st, at)]. d is a predefined threshold value.

Hence, the optimal policy π∗
θ of the SRL problem can be

determined by solving (4). Note that, alternative formulations,
e.g., finite-horizon undiscounted returns, can also be applied
to define the optimization problem (4). The proposed GenSafe
is adaptable to these different definitions by modifying the re-
formulated ROMDP-based constraints accordingly, see Sec. V
for more details.
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C. PPO-Lagrangian
Directly solving (4) is generally infeasible since, on the one

hand, both the reward function R and the cost function C
are unknown and necessitate approximations. On the other
hand, the constrained nature of the optimization problem
poses computational challenges. Therefore, a widely employed
method in model-free SRL is the introduction of Lagrangian
relaxation. The Lagrangian of (4) can be written as

L(θ, λ) = JR(πθ)− λ(JC(πθ)− d), (5)

where λ ∈ R+ is the Lagrange multiplier. It then converts
the constrained optimization problem (4) into the following
unconstrained problem

L(θ∗, λ∗) = max
θ

min
λ

L(θ, λ), (6)

where the tuple (θ∗, λ∗) indicates the optimal saddle point.
If JR(πθ) and JC(πθ) are known, (6) can then be solved via
gradient search methods [17].

For this purpose, the PPO-Lagrangian method [12] employs
the PPO clipped objectives [30] for the estimation of JR(πθ)
and JC(πθ) as

JR(πθ) = Et

[
min(rt(θ)A

t
R, clip(rt(θ), 1− ϵ, 1 + ϵ)At

R)
]
,

(7)
JC(πθ) = Et

[
min(rt(θ)A

t
C , clip(rt(θ), 1− ϵ, 1 + ϵ)At

C)
]
,

(8)
where rt(θ) = πθ(at|st)

πθold (at|st) represents the likelihood ratio of
selecting action at in state st under the parameter θ compared
to θold. Et indicates the empirical average over a finite batch
of samples, and ϵ is the clip ratio. At

R and At
C are estimated

advantages for the reward and cost, which are often computed
via Generalized Advantage Estimation (GAE) [56] as

At
R =

k∑
l=0

(γλ̄)lδt+l
R , At

C =

k∑
l=0

(γλ̄)lδt+l
C (9)

where δtR = rt+1 + VR(st+1) − VR(st) and δtC = ct+1 +
VC(st+1)− VC(st) denote the reward and cost temporal dif-
ferences on the sample path, respectively. λ̄ is a parameter that
adjusts the bias-variance trade-off in GAE. In general, VR(s)
and VC(s) are approximated using neural networks, which are
trained with data from sampled trajectories. However, in the
early learning phase, the limited data availability impedes the
accuracy of these approximations, leading to diminished safety
performance. To tackle this problem, we therefore propose
GenSafe in this work.

IV. REDUCED ORDER MARKOV DECISION PROCESS

The central idea of the proposed GenSafe involves utilizing
a Reduced Order Markov Decision Process (ROMDP) as a
low-dimensional proxy for approximating the cost function
in CMDP. In this section, we explain how to construct
the ROMDP using order reduction techniques that leverage
data observed during the learning process (Sec. IV-A). The
construction process (Sec. IV-B) consists of five steps: state
abstraction (Sec. IV-B1), action abstraction (Sec. IV-B2), cost
abstraction (Sec. IV-B3), transition abstraction (Sec. IV-B4),
and policy abstraction (Sec. IV-B5). More details are presented
as follows.

A. Data Samples

During the online learning process, we receive sampled data
about the reward and cost returns. For better explaining the
construction of the ROMDP, we first clarify how data samples
are defined in this work.

We denote the entire set of currently available data as D,
which is defined as

D =



D1,
D2,
. . .
Di,
. . .
Dn


=



(s1, a1, s
′
1, r1, c1),

(s2, a2, s
′
2, r2, c2),

. . .
(si, ai, s

′
i, ri, ci),

. . .
(sn, an, s

′
n, rn, cn)


(10)

where each data sample corresponds to one timestep in the
learning process. Di = (si, ai, s

′
i, ri, ci), i = 1, . . . , n repre-

sents the i-th data sample that contains the current state si, the
applied action ai, the subsequent state s′i for this given state-
action pair, and the associated single-stage reward ri and cost
ci. The size of the dataset is denoted by |D| = n.

For brevity, we also denote the set of all current states
included in D as Ds = {s1, . . . , sn}. Similarly, we use
Da = {a1, . . . , an}, Ds′ = {s′1, . . . , s′n}, Dr = {r1, . . . , rn},
Dc = {c1, . . . , cn} to represent the set of applied actions,
subsequent states, rewards and costs in D, respectively. These
datasets are then utilized to construct a low-dimensional
ROMDP for approximating the cost function.

B. Construction of ROMDP

In complex autonomous systems, the state s usually com-
prises observations of numerous physical attributes, resulting
in a high-dimensional state space S ⊆ Rns . This high
dimensionality presents computational challenges for function
approximation, especially when data samples are insufficient.
To address this problem and improve constraint satisfaction in
the early learning phase, we apply order reduction techniques
to transform the original state s into a new, simplified state
sr (referred to as the reduced state in this paper) with a
reduced dimensionality of the state space Sr ⊆ Rnsr , i.e.,
nsr ≪ ns. Following this transformation, we construct a
ROMDP based on the reduced state sr accordingly, which
is defined as follows.

Definition 1 (ROMDP). Given a CMDP M =
(S,A, T,R,C, γ, µ), a corresponding ROMDP
Mr = (Sr, Ar, T r, Cr, γ, µr) is constructed by using
the reduced state sr ∈ Sr and the reduced action ar ∈ Ar,
where sr = fs(s) and ar = fa(a). fs : S → Sr and
fa : A → Ar are referred to as the state abstraction
function and the action abstraction function, respectively.
T r : Sr × Ar × Sr → [0, 1] is the reduced transition kernel
for the reduced states and actions. Cr : Sr×Ar → R denotes
the reduced cost function that serves as a low-dimensional
approximation of C. The discount factor γ remains the same
as in the CMDP. The initial state distribution µr is derived
by applying fs to µ accordingly.

Since the ROMDP is specifically employed to improve
constraint satisfaction in SRL, it incorporates only the cost
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Fig. 2. Example of the state abstraction. Through applying t-SNE, a set of
original states Ds = {s1, . . . , s7} is transformed into a corresponding set of
low-dimensional states Dl = {l1, . . . , l7}, where similar high-dimensional
data points are represented by nearby low-dimensional states. The mapping
function fl, trained with Ds and Dl, reduces the high-dimensional state space
S to a two-dimensional state space Sl. The GMM classifier fGMM then divides
Sl into ks = 4 regions, each assigned with an index vs ∈ {1, 2, 3, 4}. The
reduced state sr is thus determined by using the state abstraction function
sr = fs(s) = fGMM(fl(s)), e.g., we have sr1 = fs(s1) = sr3 = fs(s3) = 1
and Dsr = {sr1, . . . , sr7} = {1, 4, 1, 2, 3, 4, 3} in this example.

function. In the following, we present details about the con-
struction of ROMDP, which consists of state abstraction, action
abstraction, cost abstraction, transition abstraction and policy
abstraction.

1) State Abstraction: To determine the state abstraction
function fs, we first apply an order reduction technique to
transform the set of original states Ds = {s1, . . . , sn} into
a corresponding set of low-dimensional states. For this, we
propose using t-distributed Stochastic Neighbor Embedding
(t-SNE) [57], a method originally developed for visualizing
high-dimensional data. Compared to traditional methods like
Principal Component Analysis (PCA), t-SNE is able to more
effectively distinguish and classify high-dimensional data.
Through the usage of Euclidean distance as the similarity
metric, t-SNE projects high-dimensional data points into a
two- or three-dimensional state space Sl, in which similar
high-dimensional data points are represented by nearby low-
dimensional data points with high probability (see Fig. 2 for
an example). In this work, we consider the order reduction
to a two-dimensional state space, i.e., Sl ⊆ R2. The result
of applying t-SNE is a set of low-dimensional states Dl =
{l1, . . . , ln}, where each state li is the reduced representation
of its original state si. For a more comprehensive explanation
of how t-SNE computes these low-dimensional states, please
refer to Appendix A and [57].

Note that, while t-SNE effectively determines the values
of the low-dimensional states, it does not provide an explicit
expression for the mapping function l = fl(s) : S → Sl.

To address this, we train a neural network to approximate
this mapping function using the set of original states Ds and
the corresponding set of low-dimensional states Dl. Then, by
leveraging the mapping function fl, we are able to reduce
the dimensionality of the original state space S to a two-
dimensional state space Sl. However, dealing with a continu-
ous state space often still presents computational challenges.
Therefore, to further improve computational efficiency and
make it more manageable for cost function approximation,
we proceed to discretize the low-dimensional state space Sl.

A frequently used approach for discretization is dividing the
entire state space Sl into grids of fixed sizes. However, this
method may not be effective when data points are unevenly
distributed across the state space (see Fig. 5a for an example).
Therefore, in this work, we employ a Gaussian Mixture
Model (GMM) classifier [58], which is trained on Dl, for
discretization. With a predefined number of clusters ks, the
GMM classifier segments the low-dimensional state space Sl

into ks distinct cluster regions, with each region being assigned
an index vs ∈ {1, 2, . . . , ks}. For any given low-dimensional
state l, its corresponding cluster index is determined by
vs = fGMM(l), where fGMM : Sl → {1, 2, . . . , ks} denotes the
GMM-based classification process. Hence, the reduced state
sr can be effectively represented by the cluster index vs, and
the reduced state space Sr becomes the collection of all these
cluster indices, i.e., we have sr = vs ∈ Sr = {1, . . . , ks}.
Consequently, the state abstraction function fs is defined as

sr = fs(s) = fGMM(fl(s)), (11)

which indicates that the original state s is first transformed into
a corresponding low-dimensional state l, and then is classified
by the GMM classifier (see Fig. 2). We denote the set of
reduced states that corresponds to Ds as Dsr = {sr1, . . . , srn}.

Remark 2. While it is possible to directly learn a GMM
classifier in the original state space S, accurately approx-
imating a high-dimensional state space usually demands a
considerable amount of data. In contrast, by introducing a
low-dimensional state space Sl, we are able to reduce the
data requirement. This strategy is based on the assumption
that original states s that map to the same reduced state sr

are likely to have similar cost estimates. From this perspective,
the reduced state sr can be viewed as a low-dimensional safety
feature that simplifies the computational complexity while still
maintaining the capability to effectively capture critical safety
characteristics.

2) Action Abstraction: Normally, the action space A ⊆ Rna

is of smaller dimensionality compared to the state space S, and
the actions are usually distributed more evenly. Therefore, for
the action abstraction, we opt for a straightforward approach of
discretizing the action space A into grids of fixed sizes. Given
a specified number of grids per dimension ka, this results in
a total of kna

a grids. We assign each of these grids an index
va ∈ {1, 2, . . . , kna

a }. In a manner analogous to the reduced
states, the reduced action ar is thus represented by this index
va, and the reduced action space Ar is the collection of all
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Fig. 3. Example of the action abstraction. For a two-dimensional action space
A ⊆ R2, we discretize it using ka = 3, which results in a total of kna

a = 9
grids. Each grid cell is assigned an index va ∈ {1, . . . , 9}. ac(1), . . . , ac(9)
denote the center of each grid. For a set of original applied actions Da =
{a1, . . . , a4}, we thus have ar1 = fa(a1) = 5, ar2 = fa(a2) = ar3 =
fa(a3) = 9, ar4 = fa(a4) = 1.

such indices, i.e., ar = va ∈ Ar = {1, 2, . . . , kna
a }. The action

abstraction function fa is thus defined as

ar = fa(a) = argmin
va

||a− ac(va)||2 (12)

where ac(va) indicates the center of the grid cell indexed by
va (see Fig. 3 for an example). fa can be considered as a
localization function that, for a given action a, determines the
specific grid cell it falls within and then returns the correspond-
ing index va. The set of reduced actions that corresponds to
Da are denoted as Dar = {ar1, . . . , arn}.

Remark 3. In this work, we assume that the action space A
has a relatively small dimensionality, rendering it manageable
for straightforward discretization using fixed grid sizes, e.g.,
na = 2 or na = 3. For scenarios where the action space
possesses a higher dimensionality, a similar order reduction
technique that is used for the state space can be applied to
enhance computational efficiency.

3) Cost Abstraction: After the state and action abstractions,
we are now able to approximate the original cost function C
with a reduced cost function Cr, which leverages the reduced
states and actions. To achieve this, we first reorganize the set
of observed costs Dc = {c1, . . . , cn} by using its associated
sets of reduced states Dsr and reduced actions Dar , which are
obtained by applying the state and action abstraction functions
to Ds and Da, respectively. For each specific pair of the
reduced state and action, we organize the entire dataset D
to identify a corresponding set of observed costs as follows

DC
sr,ar = {ci|fs(si) = sr, fa(ai) = ar}, (13)

which includes all costs associated with the given reduced
state sr and action ar. The size of this dataset is denoted as
|DC

sr,ar | = nsr,ar .

Then, the reduced cost function Cr is computed as follows

Cr(sr, ar) =


∑

ci∈DC
sr,ar

ci

nsr,ar

, if nsr,ar > 0,

∆, if nsr,ar = 0,

(14)

which indicates that the reduced cost is determined by av-
eraging the observed costs within DC

sr,ar if this set is not
empty. When no observed costs are available for a given
reduced state and action pair, the reduced cost is set to a
predefined estimated value ∆. Thus, the value of the original
cost function C(s, a) can be approximated by using the
reduced cost function Cr through converting the original state
s and action a into their corresponding reduced state sr and
action ar, i.e., C(s, a) ≈ Cr(sr, ar) with sr = fs(s) and
ar = fa(a) (see also Example 1). Consequently, the reduced
cost function Cr serves as a low-dimensional proxy for the
original cost function C, enhancing the efficiency of estimation
and computation processes.

Example 1. Consider an example where the entire dataset
D contains 5 data samples, resulting in the respective sets
of original states Ds = {s1, . . . , s5}, original actions Da =
{a1, . . . , a5} and observed costs Dc = {c1, . . . , c5}. Suppose
that after applying the state and action abstraction func-
tions, we obtain the corresponding sets of reduced states
and actions as Dsr = {sr1, . . . , sr5} = {1, 1, 2, 2, 3} and
Dar = {ar1, . . . , ar5} = {1, 1, 1, 2, 2}, where we assume that
Sr = {1, 2, 3} and Ar = {1, 2}. Thus, by sorting the dataset
D, we identify the following sets of observed costs DC

sr,ar for
each reduced state and action pair:

DC
1,1 = {c1, c2}, DC

1,2 = ∅,

DC
2,1 = {c3}, DC

2,2 = {c4},
DC

3,1 = ∅, DC
3,2 = {c5}. (15)

Therefore, the reduced cost function is calculated as

Cr(1, 1) =
c1 + c2

2
, Cr(1, 2) = ∆,

Cr(2, 1) = c3, Cr(2, 2) = c4,

Cr(3, 1) = ∆, Cr(3, 2) = c5. (16)

For any new state and action pair, the original cost function
C(s, a) is estimated by using the corresponding reduced state
and action, e.g., if fs(s6) = sr6 = 2 and fa(a6) = ar6 = 1,
then we have C(s6, a6) ≈ Cr(sr6, a

r
6) = Cr(2, 1) = c3.

Note that, while the single-stage cost can be directly esti-
mated using the reduced cost function Cr, solving the SRL
problem (4) often requires the estimation of future costs
JC(πθ) under the current policy πθ. Hence, to facilitate an
accurate estimation of these future costs, we further incor-
porate transition abstraction and policy abstraction into the
construction of ROMDP.

4) Transition Abstraction: To determine the reduced tran-
sition kernel T r, we first transform the set of observed
subsequent states Ds′ = {s′1, . . . , s′n} into a corresponding
set of subsequent reduced states Dsr′ = {sr′1 , . . . , sr

′

n } using
the state abstraction function fs. Similar to the process of cost
abstraction, we then identify a corresponding set of subsequent
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reduced states for each reduced state and action pair by
reorganizing Dsr′ alongside its associated Dsr and Dar

Dsr
′

sr,ar = {sr
′

i |fs(si) = sr, fa(ai) = ar}, (17)

where each element represents an observed data sample for the
transition path sr×ar → sr

′
. Note that, the size of this dataset

is the same as DC
sr,ar , i.e., |Dsr

′

sr,ar | = nsr,ar , as both datasets
are derived by sorting the entire dataset D according to the
reduced state and action pairs. Subsequently, we count the
number of observed data samples for each possible transition
path sr × ar → sr

′
, which is denoted as nsr×ar→sr′ . The

reduced transition kernel T r is thus computed as

T r(sr, ar, sr
′
) =

{n
sr×ar→sr

′

nsr,ar
, if nsr,ar > 0,

1
ks
, if nsr,ar = 0,

(18)

where ks = |Sr| is the size of the reduced state space. This
implies that when data samples are available for a specific
reduced state and action pair, the probability of transitioning
to a particular subsequent reduced state sr

′
is proportional to

the observed frequency of this transition path sr × ar → sr
′

among all observed data samples for this pair (see Example 2).
Conversely, if no data exists, all subsequent reduced states are
assigned equal transition probabilities. Hence, for each given
pair of the reduced state sr and action ar, we ensure that∑

sr′∈Sr T r(sr, ar, sr
′
) = 1 is satisfied.

Example 2. Continued from Example 1, we assume that the
corresponding set of subsequent reduced states is Dsr′ =
{sr′1 , . . . , sr

′

5 } = {1, 2, 2, 3, 1}. Hence, we have

Dsr
′

1,1 = {sr
′

1 , sr
′

2 } = {1, 2}, Dsr
′

1,2 = ∅,

Dsr
′

2,1 = {sr
′

3 } = {2}, Dsr
′

2,2 = {sr
′

4 } = {3},

Dsr
′

3,1 = ∅, Dsr
′

3,2 = {sr
′

5 } = {1}, (19)

with the counts of observed transition paths as n1×1→1 = 1,
n1×1→2 = 1, n2×1→2 = 1, n2×2→3 = 1, n3×2→1 = 1, and
nsr×ar→sr′ = 0 for any other transition paths. The reduced
transition kernel T r is thus calculated by using these counts.
For instance, since n1,1 = 2, n1,2 = 0, n2,1 = 1, we have

T r(1, 1, 1) =
1

2
, T r(1, 1, 2) =

1

2
, T r(1, 1, 3) = 0,

T r(1, 2, 1) =
1

3
, T r(1, 2, 2) =

1

3
, T r(1, 2, 3) =

1

3
,

T r(2, 1, 1) = 0, T r(2, 1, 2) = 1, T r(2, 1, 3) = 0. (20)

5) Policy Abstraction: To predict future costs, we also
construct a reduced policy πr(sr) : Sr → Ar that emulates the
original policy πθ. It determines the probability of selecting
a specific reduced action ar for a given reduced state sr. For
this, we utilize the counts of observed data samples for each
reduced state and action pair nsr,ar that are determined when
creating the datasets DC

sr,ar and Dsr
′

sr,ar . These counts reflect
instances where, upon converting the original state and action
to their reduced forms, the original policy πθ selects ar as the
action for the reduced state sr. The total number of observed
pairs for a specific reduced state sr is denoted as nsr , where

we have nsr =
∑

ar∈Ar nsr,ar . Then, the reduced policy πr

is defined by the following probabilities

P(πr(sr) = ar) =

{
nsr,ar

nsr
, if nsr > 0,

1
kna
a

, if nsr = 0,
(21)

where kna
a = |Ar| is the size of the reduced action space.

Similarly, this indicates that when data are available, the prob-
ability of choosing the reduced action ar for the reduced state
sr is proportional to its observed frequency relative to the total
observations for this state (see Example 3). For reduced states
sr without data, we adopt an equal probability distribution
across all possible reduced actions. Therefore, for each given
reduced state sr, we have

∑
ar∈Ar P(πr(sr) = ar) = 1.

Example 3. Based on Example 1, we have the following
counts for each reduced state and action pair: n1,1 = 2,
n1,2 = 0, n2,1 = 1, n2,2 = 1, n3,1 = 0, n3,2 = 1. Hence,
we have n1 = n1,1 + n1,2 = 2, n2 = n2,1 + n2,2 = 2,
n3 = n3,1 + n3,2 = 1. The reduced policy πr is thus
represented by the following probabilities

P(πr(1) = 1) = 1, P(πr(1) = 2) = 0,

P(πr(2) = 1) =
1

2
, P(πr(2) = 2) =

1

2
,

P(πr(3) = 1) = 0, P(πr(3) = 2) = 1. (22)

Through the aforementioned comprehensive abstraction pro-
cesses, we develop a ROMDP model that functions as a low-
dimensional proxy for the cost function in CMDP. It is capable
of efficiently predicting not only the single-stage costs but also
the future costs under a given policy πθ. In the next section,
we explain how to integrate this constructed ROMDP into our
proposed GenSafe for improving the safety performance of
SRL algorithms.

V. GENERALIZABLE SAFETY ENHANCER

The fundamental concept behind the proposed Generaliz-
able Safety Enhancer (GenSafe) is to reformulate the orig-
inal cost constraint in CMDP into constraints based on the
ROMDP. Then, GenSafe enhances the performance of SRL
algorithms by modifying each applied action in accordance
with these revised constraints. In essence, GenSafe acts as an
additional safety layer for SRL algorithms (see Fig. 1). Further
details are provided in the remaining part of this section.

A. Action Correction Based on ROMDP

Solving the SRL problem (4) necessitates the prediction of
future costs JC(πθ) under a given policy πθ. However, accu-
rately estimating JC(πθ) is a challenging task and often de-
mands complex computations, e.g., (8)-(9) in PPO-Lagrangian.
To enable a more reliable and efficient SRL process during
the early learning phase, we utilize the constructed ROMDP
to approximate cost returns. Nonetheless, it should be noted
that a certain degree of information loss is inevitable in the
order reduction process, resulting in discrepancies between the
estimated and the actual values. Such inaccuracies can accu-
mulate over time, especially with longer prediction horizons.
This complicates the task of performing a reliable policy-level
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Algorithm 1 Value iteration for calculating V r
Cr (sr)

Require: The constructed ROMDP, tolerance δ
1: Initialize V r

Cr (sr) = 0 for all sr ∈ Sr

2: ∆V = δ
3: while ∆V ≥ δ do
4: ∆V = 0
5: for sr,i ∈ Sr , i = 1, . . . , ks do
6: Vcurrent = V r

Cr (sr,i)
7: Update V r

Cr (sr,i) according to (27)-(28)
8: ∆V = max(∆V , |Vcurrent − V r

Cr (sr,i)|)
9: end for

10: end while

modification, i.e., directly revising the policy πθ, based on
ROMDP predictions.

To address this issue and fully utilize the prediction capabil-
ity of the ROMDP, we draw inspiration from [29] and opt for
action-level corrections rather than policy-level modifications.
At each timestep of the learning process, the current SRL
policy proposes an action a0 = πθ(s0) based on the current
state s0. Then, we solve the following optimization problem
to refine this action a0 such that the modified action am is
more likely to satisfy the safety constraints

am = argmin
a

||a− a0||2, (23)

s.t. Cr(sr0, a
r) ≤ ds, (24)

Cr(sr0, a
r) + γV r

Cr (sr
′

0 ) ≤ d, (25)

where sr0 = fs(s0) and ar = fa(a) are the corresponding
reduced state and action, respectively. sr

′

0 denotes the sub-
sequent reduced state resulting from applying ar to sr0, i.e.,
sr0×ar → sr

′

0 . The goal of this optimization is to find an action
am that remains as close as possible to the initially determined
action a0 while satisfying the constraints (24) and (25). (24)
imposes an immediate cost constraint that the single-stage cost
estimated by the ROMDP should not exceed a predefined
threshold ds. This constraint is motivated by the fact that,
in various autonomous systems, e.g., autonomous vehicles or
robotic manipulators, the immediate cost can significantly im-
pact system safety [29]. Therefore, we additionally incorporate
this constraint into the optimization process. (25) mirrors the
original cost constraint JC(πθ) = C(s0, a0) + γVC(s

′

0) ≤ d,
where s0 × a0 → s

′

0 and the state, action and cost are
substituted with their reduced forms contained in the ROMDP,
respectively. V r

Cr (sr) denotes the reduced value function for
the reduced state sr and cost Cr under the reduced policy πr.
Taking into account the reduced transition kernel T r, (25) can
be further reformulated as

Cr(sr0, a
r) + γ

∑
sr∈Sr

T r(sr0, a
r, sr)V r

Cr (sr) ≤ d. (26)

However, although the reduced cost Cr is identified during
the ROMDP construction, tackling (26) requires the computa-
tion of the reduced value function V r

Cr (sr) for each reduced
state sr. For this, we adapt the value iteration algorithm [59] by
replacing the traditional maximum operation with an average
operation that accounts for the probabilities defined by the
reduced policy πr (see Algorithm 1). After initializing the
values of all reduced states to zero, we iteratively update

Algorithm 2 SRL with GenSafe
Require: Number of training epochs ke, number of timesteps per

each epoch kt
1: Initialize SRL policy πθ , ROMDP Mr = ∅
2: i = 0, D = ∅
3: while i < ke do ▷ Training loop
4: j = 0
5: while j < kt do ▷ Collect Data
6: a0 = πθ(s0) ▷ SRL policy
7: if Mr ̸= ∅ then
8: Find am by solving (23) ▷ Action correction
9: else

10: am = a0

11: end if
12: Add observed data sample D = (s0, am, s′0, r, c) to D
13: end while
14: Construct the ROMDP Mr based on D
15: Update the policy πθ with the selected SRL algorithm
16: end while

V r
Cr (sr) for each reduced state sr,i, i = 1, . . . , ks contained in

the reduced state space Sr by utilizing the Bellman equation

V r
Cr (sr,i) =

∑
ar∈Ar

P(πr(sr,i) = ar)V r
sr,i,ar , (27)

with

V r
sr,i,ar = Cr(sr,i, ar)+γ

∑
sr∈Sr

T r(sr,i, ar, sr)V r
Cr (sr), (28)

where the values are calculated through averaging the proba-
bilities given by the reduced transition kernel T r and policy
πr, rather than the maximum operation employed in standard
value iteration. The resulting reduced value function V r

Cr (sr)
estimates the future cost returns for any given reduced state sr

under the reduced policy πr. The update is terminated when
the difference in the value function between two successive
iterations falls beneath a predefined threshold δ.

Once the reduced value function V r
Cr (sr) is determined,

verifying constraints (24) and (26) for any chosen action a
becomes straightforward, akin to referencing a look-up table.
However, due to the non-differentiable nature of both the
reduced cost Cr and value function V r

Cr (sr), solving the opti-
mization problem (23) through gradient-based methods is not
feasible. Therefore, we employ derivative-free optimization
techniques to find the modified action am. Specifically, we
use Particle Swarm Optimization (PSO) [60] in this work.
Consequently, the proposed GenSafe incorporates this action
correction mechanism, grounded in ROMDP predictions, to
enhance the safety performance of SRL algorithms.

B. SRL with GenSafe

The integration of the proposed GenSafe with a chosen
model-free SRL algorithm, e.g., PPO-Lagrangian, is delineated
in Algorithm 2. Throughout the learning process, at each
timestep, the SRL policy πθ determines an action a0 based on
the current state s0. Subsequently, provided that the ROMDP
has been constructed, i.e., except during the initial epoch,
the proposed GenSafe solves the optimization problem (23)
to identify a modified action am. This action is then applied
to the system, with the resultant observed data sample being
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(a) Circle Level 1 (b) Circle Level 2 (c) Button Level 1 (d) Button Level 2

Fig. 4. SRL tasks. (a)-(b) Circle Level 1 and Circle Level 2. The red dot represents the agent robot, which operates based on point dynamics. The green
circle signifies the target circular path that the robot aims to follow. Meanwhile, the yellow lines depict the walls that the robot should avoid colliding with.
(c)-(d) Button Level 1 and Button Level 2. The red dot symbolizes the robot. The orange spheres denote the buttons, among which only one is designated as
the goal button. The green pillar represents a fixed obstacle, and the purple cubes depict moving obstacles. The blue circles outline the hazardous zones.

incorporated into the dataset D. Upon reaching a predefined
number of timesteps within each epoch, the ROMDP is re-
constructed leveraging the most recent dataset D. Meanwhile,
the SRL policy πθ is updated according to the selected SRL
algorithm. In essence, GenSafe acts as an additional safety
layer to SRL algorithms (see also Fig. 1). Given its focus on
action-level corrections, GenSafe is inherently compatible with
a broad spectrum of model-free SRL algorithms, enhancing
their safety performance without necessitating modifications
to their core methodologies.

C. Dynamic Activation of GenSafe

As the dataset D enlarges, the prediction accuracy of the
ROMDP is expected to improve. However, due to the inherent
information loss in the order reduction process, discrepancies
between the estimated and actual costs could persist regardless
of the data volume. In contrast, with a sufficient amount of
data, traditional methods of approximating value functions
VR(s) and VC(s) via neural networks are able to provide accu-
rate estimations, thereby leading to satisfactory performance of
SRL algorithms. This rationale forms the basis for our strategy
of applying the ROMDP for enhancing the safety performance
of SRL algorithms, particularly in the early learning phases
where data availability is often limited.

Recognizing this characteristic, we therefore introduce a
dynamic activation mechanism for GenSafe. For instance, with
PPO-Lagrangian as the SRL algorithm, we assess the accu-
racy of the current cost value function VC(s) approximation
after each epoch update. This can be done by determining
whether the loss value from updating the neural network falls
below a predetermined threshold. If it does, we deactivate
GenSafe, meaning no action corrections will be applied, and
the action chosen by the SRL policy πθ is directly utilized.
Subsequently, we continue to monitor the loss value associated
with approximating the cost value function VC(s) throughout
the learning process. If this value again exceeds a certain
threshold, indicating a degradation in approximation accuracy,
GenSafe is reactivated. Such a dynamic activation mechanism
not only enhances computational efficiency but also ensures
that, in later learning phases, the agent’s performance will not
be overly affected by the information loss caused by the order
reduction process.

Remark 4. Different criteria, e.g., the number of training
epochs completed or the observed average cost, can also
be employed to determine the deactivation or reactivation of
GenSafe. Choosing these criteria should consider the specific
requirements and properties of the task, alongside the charac-
teristics of the selected SRL algorithm, to ensure a satisfying
performance of GenSafe tailored to the learning context.

D. Practical Implementation Details

During the practical implementation of GenSafe, we adopt
several strategies to improve computational efficiency. Firstly,
instead of reconstructing the ROMDP at every epoch, we
establish a periodic update interval, meaning that the ROMDP
is reconstructed only after a specified number of epochs.
Secondly, considering the available computational resources
and memory constraints, we impose a limit on the maximum
number of data samples that can be stored in the dataset
D. Upon reaching this limit, we prioritize the retention of
newer data samples and discard older entries to maintain the
dataset size. Thirdly, given that the computational cost of t-
SNE increases with more data samples, we also limit the
maximum number of data samples employed in t-SNE compu-
tations. If the number of available data samples surpasses this
limit, we randomly select a subset from D to use, ensuring
manageable computational loads. These measures collectively
enhance the computational efficiency of GenSafe. However,
the determination of the parameter values should take into
account the available computational resources as well as the
specific requirements of the tasks at hand.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
GenSafe on various SRL benchmark problems. We first ex-
plain the employed experimental setup. Then, we demonstrate
the outcomes of the model order reduction process, illustrating
the effectiveness of utilizing t-SNE for identifying the reduced
state space. Finally, we present the safety and task perfor-
mance, i.e., the reward and cost returns, observed throughout
the learning process. More details are provided as follows.

A. Experimental Setup

We assess the performance of GenSafe on four represen-
tative SRL tasks that are given in Safety-Gymnasium [61], a
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collection of SRL environments that builds upon the widely
recognized Safety-Gym [12] benchmark. The tasks we used
are: Circle Level 1, Circle Level 2, Button Level 1, and Button
Level 2 (see Fig. 4). In the circle tasks, a robot needs to follow
a circular path while avoiding collisions with the surrounding
walls. Circle Level 1 has two walls, whereas Circle Level 2
includes four walls, increasing the complexity of the task (see
Fig. 4a and Fig. 4b). In the button tasks, the robot’s objective
is to press a designated goal button while circumventing
obstacles and hazardous zones. Meanwhile, it should also not
activate any incorrect buttons. Button Level 2 has an increased
number of obstacles and hazardous zones compared to Button
Level 1 (see Fig. 4c and Fig. 4d). The state space for the circle
tasks is 28-dimensional, while the button tasks present a more
complex 76-dimensional state space. All tasks employ a two-
dimensional action space. For more details about these task
environments, the readers may refer to [61].

For each task, we compare the performance of five different
learning methods: (1) PPO, which serves as the reference
method to illustrate the standard performance of DRL algo-
rithms; (2) PPO-Lagrangian (PL), which is a conventional
SRL approach typically used as the baseline for SRL algo-
rithm assessments; (3) FOCOPS (FO), a state-of-the-art SRL
method proposed in [25], which is considered to have a better
performance than PPO-Lagrangian; (4) PPO-Lagrangian with
GenSafe (PL-G) and (5) FOCOPS with GenSafe (FO-G),
which integrate the PPO-Lagrangian and FOCOPS algorithms
with the proposed GenSafe, respectively. The PL-G and FO-
G methods are utilized to demonstrate the effectiveness of
GenSafe on enhancing the performance of existing SRL al-
gorithms. To ensure a thorough comparison, each method is
executed on each task using five randomly selected seeds, and
the results are averaged accordingly.

The following parameters are used in our experiments:
number of clusters for the state abstraction ks = 100, number
of grids for the action abstraction ka = 20, estimated cost for
unobserved reduced state-action pairs ∆ = 0.5, immediate
cost threshold ds = 0.3, future cost threshold d = 25,
number of timesteps per each epoch kl = 20000, number of
training epochs ke = 200, tolerance for calculating the reduced
value function δ = 0.01. The thresholds for deactivating and
reactivating GenSafe are respectively set to 2 and 5. The neural
network, which approximates the mapping function fl, has
two layers with 64 neurons in each layer. The ROMDP is
reconstructed every two epochs, and the maximum size of the
dataset D is selected as 1000000. The maximum number of
data samples employed for t-SNE computations is limited to
200000. For solving (23), PSO is employed with a swarm size
of 20, a maximum iteration count of 50, and a termination
tolerance of 1e−4.

B. Model Order Reduction

We utilize the initial construction of ROMDP in the Button
Level 1 task as an example to illustrate the results of model
order reduction, i.e., the application of t-SNE for deriving
a reduced state space. Given a dataset of original states
Ds = {s1, . . . , sn}, we employ t-SNE to map these states
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Fig. 5. (a) The set of low-dimensional states Dl = {l1, . . . , l20000} dis-
tributed among a two-dimensional state space Sl, which is derived by applying
t-SNE on the set of original states Ds = {s1, . . . , s20000}. The dimensions
lx and ly represent two abstract features of these low-dimensional states.
Each data sample is associated with an observed cost of either c = 0 (blue)
or c = 1 (green), where c = 0 and c = 1 denote safe and unsafe observations,
respectively. (b) Results of the GMM classifier. Each low-dimensional state
li is categorized into one of the ks = 100 cluster regions, with each region
represented by a different color and assigned an index vs ∈ {1, 2, . . . , 100}.
The reduced state sr corresponding to each original state s is therefore given
by the cluster index, i.e., sr = vs = fs(s) = fGMM(l) = fGMM(fl(s)).
This results in a dataset of reduced states Dsr = {sr1, . . . , sr20000}.

into a corresponding set of low-dimensional states Dl =
{l1, . . . , ln}, with n = 20000 representing the first iteration.
The results are depicted in Fig. 5a, where each 76-dimensional
original state si is transformed into a two-dimensional state li.
Note that, similar to outcomes of PCA, the dimensions of the
low-dimensional states, i.e., lx and ly , do not possess actual
physical meanings but serve only as abstract features. The
coloring within the figure corresponds to the observed cost for
each data sample. As the button tasks are designed to return
a binary cost, each data sample is associated with a cost of
either c = 0 or c = 1, where c = 0 and c = 1 denote safe
and unsafe data samples, respectively. It can be observed that,
t-SNE effectively reduces the original high-dimensional state
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(a) Circle Level 1 (b) Circle Level 2 (c) Button Level 1 (d) Button Level 2

(e) Circle Level 1 (f) Circle Level 2 (g) Button Level 1 (h) Button Level 2

Fig. 6. Rewards and costs of the selected learning methods on different SRL tasks. (a)-(d) The reward returns for the Circle Level 1, Circle Level 2, Button
Level 1, and Button Level 2 tasks, respectively. (e)-(h) The corresponding cost returns for the same tasks.

space S into a representative low-dimensional state space Sl,
grouping safe and unsafe data samples closely. This supports
the assumption that states with proximate reduced states are
likely to incur similar costs, thereby formulating the basis
for employing such a reduced state space to approximate the
original cost function.

After determining the set of low-dimensional states Dl =
{l1, . . . , ln} via t-SNE, we proceed to train a GMM classifier
on this dataset, choosing the number of clusters as ks = 100.
The corresponding outcomes of the GMM classifier are il-
lustrated in Fig. 5b, where each low-dimensional state li is
categorized into one of the 100 cluster regions. We assign each
cluster region an index vs ∈ {1, 2, . . . , 100}, with different
colors in the figure representing different clusters. Conse-
quently, the reduced state sr for each original state s is given
by the corresponding cluster index, i.e., sr = vs = fs(s) =
fGMM(l) = fGMM(fl(s)), leading to the set of reduced states
Dsr = {sr1, . . . , srn}. The reduced state space is, therefore, the
collection of all these indices Sr = {1, 2, . . . , 100}. Utilizing
the identified Dsr , we accordingly construct the ROMDP.
More details about the performance of GenSafe based on the
constructed ROMDP are presented in the next subsection.

C. Task and Safety Performance

We compare the performance of the selected learning meth-
ods on all four SRL tasks. The results are presented in Fig. 6.
For the Circle Level 1 and Circle Level 2 tasks, it can be
observed that, compared to the baseline PPO algorithm, which
does not incorporate explicit safety mechanisms, all other
approaches achieve a substantial reduction in cost returns
throughout the learning phase (see Fig. 6e and Fig. 6f).
Moreover, the proposed GenSafe notably enhances the safety
performance of existing SRL methods (see PL vs. PL-G and
FO vs. FO-G). While all four methods eventually converge
to a final cost nearing zero, the cost returns are significantly

reduced by using GenSafe during the early learning stages
(prior to 50 epochs), which aligns with GenSafe’s design
principle.

Meanwhile, the algorithms augmented by GenSafe, i.e., PL-
G and FO-G, achieve similar final rewards to their respective
original versions, albeit at a slower pace (see Fig. 6a and
Fig. 6b). A primary factor contributing to the slower increase
in reward is that, to realize a safer learning process, GenSafe
restricts the exploration of learning algorithms to regions
deemed reliably safe. While this improves safety performance,
it naturally reduces the speed of reward growth, as the search
areas for potentially higher-reward policies are constrained.
This phenomenon is also observable when comparing PPO
to other SRL algorithms, which, despite achieving higher
reward returns, does so at the expense of safety due to its
unrestricted exploration. Such a trade-off between safety and
task performance is recognized in various SRL studies [7]–
[9]. Nevertheless, GenSafe is still able to achieve final rewards
comparable to those of the original SRL algorithms, demon-
strating its ability to enhance safety while maintaining task
performance at a satisfactory level.

Similar results can also be observed for the Button Level
1 and Button Level 2 tasks. As demonstrated in Fig. 6g and
Fig. 6h, GenSafe realizes a notable cost reduction, especially
in the early learning phases, for both tasks. However, its
effectiveness is slightly diminished in the Button Level 2 task
as compared to the Button Level 1 task. A major reason for
this is that, due to the increased task complexity, achieving a
safer learning process becomes more challenging, resulting in
lesser cost reductions. Nevertheless, the algorithms augmented
by GenSafe still outperform the original SRL algorithms in
terms of safety performance. The influence of task complexity
can also be noted in the trade-off between safety and task
performance. Since the transition from circle tasks to button
tasks brings an increase in difficulty, achieving safer behaviors
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also poses more challenges. Hence, the button tasks exhibit a
more obvious trade-off than the circle tasks, where achieving
a safer learning process necessitates a greater compromise on
reward returns (see Fig. 6c and Fig. 6d). This suggests that,
for more complicated tasks, the balance between safety and
task performance should be carefully determined to meet the
actual requirements and goals of the task.

VII. DISCUSSION

In this section, we discuss several important aspects of the
proposed approach, as well as its limitations and possible
future directions.

A. Action-level Correction

In this work, we employ action-level corrections instead
of policy-level modifications. Such a strategy offers easier
implementation and a broader compatibility with various SRL
algorithms, thereby enhancing the applicability of GenSafe.
Moreover, the proposed action correction incorporates an
immediate cost constraint. This facilitates the realization of
safe behaviors that require quick responses, e.g., collision
avoidance in navigation problems, providing better perfor-
mance for such tasks. However, there are also drawbacks to
the action-level correction. Firstly, limited by the ROMDP’s
capability in predicting long-term costs, the ability of the
proposed action correction to accurately account for the long-
term effects of actions is constrained. This limitation could
impact the effectiveness of GenSafe in tasks where long-term
outcomes are crucial. Secondly, since GenSafe acts as an
additional safety layer, it is separated from the policy update
process of the utilized SRL algorithm. This may potentially
lead to a less efficient policy optimization. Given these con-
siderations, the efficacy of GenSafe is therefore influenced by
the characteristics and requirements of the tasks.

B. Trade-off between Safety and Task Performance

As aforementioned, determining the trade-off between max-
imizing reward returns and ensuring system safety is a chal-
lenging problem in SRL. In the proposed GenSafe, this trade-
off is modifiable through parameters such as the estimated cost
for unobserved reduced state-action pairs ∆, the immediate
cost threshold ds, and the future cost threshold d. Setting a
lower estimated cost ∆ tends to classify more unexplored re-
gions as safe. Then, together with higher thresholds for ds and
d, a more expansive exploration is allowed, thereby leading to
a more efficient policy search and improved rewards. However,
this increased exploratory flexibility also raises the possibility
of encountering unsafe behaviors, which, in turn, results in
higher cost returns. How to determine the optimal balance
between safety and task performance remains an open research
question. Currently, decisions often rely on experience-driven
manual adjustments that are based on prior knowledge of
system characteristics and task requirements. Further research
is needed to develop more reliable and systematic approaches
for managing this trade-off.

C. Limitations and Future work

One major limitation of the proposed GenSafe is the in-
creased computational demand stemming from activities like
constructing the ROMDP and performing action corrections.
Although parallel computing techniques can be used to mit-
igate this issue, they inevitably prolong the training duration
and increase the requirements for computational resources.
One possible solution to this problem is to reformulate the con-
straints within the optimization (23) into differentiable forms,
thereby enabling the usage of gradient-based methods or the
derivation of analytical solutions. However, devising a method
for accurately and reliably transforming these constraints
needs more investigation. Another limitation of GenSafe,
echoing a common issue among model-free SRL algorithms,
is the challenge of providing absolute safety guarantees, i.e.,
complete avoidance of unsafe behaviors. Given its reliance
on a data-driven approach, the algorithm has to encounter
unsafe regions to identify and subsequently avoid them, which
inevitably leads to unsafe actions during the learning phase. To
achieve absolute safety guarantees, model-based SRL methods
that leverage precise system models and control-theoretical
concepts may offer a viable path. Nevertheless, this area
remains open for in-depth research and development.

For future work, we plan to extend the current approach
to policy-level modifications. This could be done by, e.g.,
integrating the cost predictions generated by the ROMDP into
the policy update mechanism of the selected SRL algorithm.
However, this necessitates improving the ROMDP’s long-term
prediction accuracy to ensure a reliable policy-level adjust-
ment. Another direction involves incorporating the proposed
GenSafe and ROMDP into model-based SRL algorithms. In
such a scenario, the ROMDP could serve as a simplified
version of the system model, providing estimates for use
within model-based SRL methods. Nevertheless, this requires
further research to investigate and improve the construction
of ROMDP and GenSafe to align with the characteristics and
application requirements of model-based SRL algorithms.

VIII. CONCLUSION

In this work, we present the Generalizable Safety Enhancer,
referred to as GenSafe, for improving the safety performance
of SRL algorithms. Leveraging data collected throughout the
learning process, we first apply a model order reduction tech-
nique to transform the original high-dimensional state space
into a representative two-dimensional state space. Then, based
on this reduced state space, we construct a ROMDP through a
comprehensive abstraction process that includes state, action,
cost, transition, and policy abstractions. The resultant ROMDP
serves as a low-dimensional proxy for the original cost func-
tion in CMDP. Subsequently, by reformulating the original
cost constraint into ROMDP-based constraints, we propose an
action correction mechanism that adjusts each applied action
to enhance the probability of constraint satisfaction. Through
this action-level correction strategy, the proposed GenSafe acts
as an additional safety layer for SRL algorithms, providing
a broad compatibility with a wide range of SRL algorithms.
We evaluate the performance of GenSafe across various SRL
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benchmark problems. The results illustrate the effectiveness
of GenSafe in improving the safety performance of SRL
algorithms, especially in early learning stages, while also
maintaining the task performance at a satisfactory level. This
validates the utility and applicability of GenSafe, suggesting
its potential as a versatile tool for enhancing safety across
diverse SRL applications and scenarios.
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APPENDIX A
COMPUTATIONS OF T-SNE

Given a set of original states Ds = {s1, . . . , sn}, t-SNE first
computes the conditional probability pj|i as

pj|i =
exp(−||si − sj ||2/2σ2

i )∑
k ̸=i

exp(−||si − sk||2/2σ2
i )

(29)

where ||·|| is the Euclidean distance. σi represents the variance
of the Gaussian distribution centered on the state si. This
probability pj|i can be interpreted as the probability that the
state si picks the state sj as its neighbor according to their
probability density under Gaussian distribution.

For any given variance value σi, it results in a distribution Pi

of the conditional probability pj|i across all other data points.
A binary search is then conducted to find the variance value
σi that yields a distribution Pi corresponding to a perplexity
level defined by the user. The perplexity is defined as

Perplexity(Pi) = 2H(Pi) (30)

where H(Pi) is the Shannon entropy of the distribution Pi

measured as

H(Pi) = −
∑
j

pj|i log2 pj|i (31)

As described in [57], perplexity is often interpreted as a
smooth measure of the effective number of neighbors.

To alleviate the identification problem caused by outliers,
the similarity between two data points in the training dataset
is defined using a joint probability pij

pij =
pj|i + pi|j

2n
(32)

where n = |Ds|. Since we are focused on pairwise similarities,
we define pij = 0 when i = j.

Subsequently, we calculate the set of low-dimensional states
Dl = {l1, . . . , ln} to best represent the similarity pij . This is
achieved through a similar joint probability qij for two low-
dimensional states li and lj , which is defined as

qij =
(1 + ||li − lj ||2)−1∑

k ̸=i

(1 + ||li − lj ||2)−1
(33)

where we have qij = 0 if i = j. The similarity is measured
using a heavy-tailed Student t-distribution. The values of the
low-dimensional states l1, . . . , ln are determined by minimiz-
ing a cost function Ct-SNE given as

Ct-SNE = KL(P ||Q) =
∑
i

∑
j

pij log
pij
qij

(34)

where KL(·) is the Kullback-Leibler divergence. P and Q
are the joint probability distributions in the high-dimensional
and low-dimensional state spaces, respectively. The cost func-
tion Ct-SNE evaluates the effectiveness of the identified low-
dimensional states in replicating the similarities between dif-
ferent training data points.

The minimization is performed using a gradient descent
method, where the gradient is computed as

∂C

∂li
= 4

∑
j

(pij − qij)(li − lj)(1 + ||li − lj ||2)−1 (35)

The initial values for the low-dimensional states l1, . . . , ln,
denoted as Q(0), are obtained by randomly sampling points
from an isotropic Gaussian distribution. To speed up the
optimization and avoid poor local minimum, the update of
the solution is performed with a momentum term

Q(t) = Q(t−1) + η
∂C

∂Q(t−1)
+m(t)

(
Q(t−1) −Q(t−2)

)
(36)

where Q(t) is the solution at iteration t, η is the learning rate,
and m(t) is the momentum at iteration t. More implementation
details of t-SNE are presented in [57].


